Mathematical Statistics Preliminary Examination

Statistics Group, Department of Mathematics and Statistics, Auburn University

Name: \qquad

1. It is a closed-book and in-class exam.
2. One page (letter size, 8.5 -by-11in) cheat sheet is allowed.
3. Calculator is allowed. No laptop (or equivalent).
4. Show your work to receive full credits. Highlight your final answer.
5. Solve any five problems out of the seven problems.
6. Total points are $\mathbf{5 0}$. Each question is worth $\mathbf{1 0}$ points.
7. If you work out more than five problems, your score is the sum of five highest points.
8. Time: 180 minutes. (8:30am - 11:30am, Friday, August 12, 2011)

1	2	3	4	5	6	7	Total

1. Suppose that X_{1}, X_{2}, and X_{3} are mutually independent uniform $(0,1)$. Calculate

$$
P\left(\max \left\{X_{1}, X_{2}\right\} \geq X_{3}\right)
$$

You need to calculate it rigorously using density functions to get full points.
2. Let U_{1}, \ldots, U_{n} be a random sample from the uniform $(0,1)$ distribution. Let $U_{(s)}$ be the s th order statistic. Determine $E\left(U_{(s)}\right)$ and $\operatorname{Var}\left(U_{(s)}\right)$.
3. Suppose a population consists of the integers $1, \ldots, N$. Suppose we draw a sample using binomial sampling in the following manner: we flip a fair coin N times (once for each of integer in the population) and the integer is included if the coin lands heads. Let W be the sum of the integers in the sample. Compute $E(W)$ and $\operatorname{Var}(W)$.
4. Let t_{n} be a sequence of real-valued estimators such that for $\theta \in \mathbb{R}$, the expectation and variance of t_{n} exist and $E\left(t_{n}\right) \rightarrow \theta$ and $\operatorname{Var}\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$. Show that t_{n} is consistent for θ.
5. Suppose that X_{1}, \ldots, X_{n} are iid with density

$$
f(x, \theta)=\frac{3}{4 \theta}\left(1-\frac{x^{2}}{\theta^{2}}\right), \quad|x| \leq \theta \text { and } \theta>0
$$

(a) Find an estimate $\hat{\theta}$ using the method of moments.
(b) Find the asymptotic distribution of $\hat{\theta}$ as $n \rightarrow \infty$. (Hint: use the Central Limit Theorem and delta method)
6. Suppose that X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$ random variables. Find the uniformly minimum variance unbiased estimator (UMVUE) of μ^{2} / σ^{2}. Hint: for any function h and a chi-squared random variable χ_{d}^{2}, we have $E\left[h\left(\chi_{p}^{2}\right)\right]=p \cdot E\left[h\left(\chi_{p+2}^{2}\right) / \chi_{p+2}^{2}\right]$.
7. Suppose that X_{1}, \ldots, X_{n} are iid $N\left(\mu, \sigma^{2}\right)$ and Y_{1}, \ldots, Y_{m} are iid $N\left(\theta, \sigma^{2}\right)$. Derive the likelihood ratio test for

$$
H_{0}: \mu=2 \theta+1, \quad H_{a}: \mu \neq 2 \theta+1
$$

Note that the two samples have different means but the same variance. To get full points, you should try your best to simplify the rejection region.

Solutions

1. The probability is

$$
\begin{aligned}
& P\left(\max \left\{X_{1}, X_{2}\right\} \geq X_{3}\right) \\
& =P\left(X_{1} \geq X_{3}\right)+P\left(X_{1}<X_{3}, X_{2} \geq X_{3}\right) \\
& =E\left[P\left(X_{1} \geq X_{3} \mid X_{3}\right)\right]+E\left[P\left(X_{1}<X_{3} \mid X_{3}\right) P\left(X_{2} \geq X_{3} \mid X_{3}\right)\right]
\end{aligned}
$$

For $X \sim \operatorname{uniform}(0,1)$ and $0 \leq t \leq 1$, we have

$$
P(X<t)=t, \quad P(X \geq t)=1-t
$$

Therefore,

$$
\begin{aligned}
P\left(\max \left\{X_{1}, X_{2}\right\} \geq X_{3}\right) & =E\left(1-X_{3}\right)+E\left[X_{3}\left(1-X_{3}\right)\right] \\
& =1-E\left(X_{3}^{2}\right)=\frac{2}{3}
\end{aligned}
$$

Alternative approach: We may argue that with equal probability X_{i} is the largest number. Since uniform $(0,1)$ is a continuous distribution, we do not need to consider the case where some of X_{i} are equal. Therefore,

$$
P\left(\max \left\{X_{1}, X_{2}\right\} \geq X_{3}\right)=P\left(X_{1} \text { is largest }\right)+P\left(X_{2} \text { is largest }\right)=\frac{2}{3} .
$$

This second solution will not get full points.
2. Recall that the pdf of the s th order statistic for a random sample from a distribution F with density f is

$$
n\binom{n-1}{s-1}[F(x)]^{s-1}[1-F(x)]^{n-s} f(x)
$$

For the uniform $(0,1)$ distribution, this becomes

$$
n\binom{n-1}{s-1} x^{s-1}(1-x)^{n-s}, \quad 0<x<1
$$

This is the density of the beta distribution $B(s, n-s+1)$. Thus

$$
E\left(U_{s}\right)=\frac{s}{n+1} \quad \text { and } \quad \operatorname{Var}\left(U_{(s)}\right)=\frac{s(n-s+1)}{(n+1)^{2}(n+2)}
$$

3. The sum of the values in the sample is

$$
W=1 I_{1}+2 I_{2}+\cdots+N I_{N},
$$

where I_{j} is 1 or 0 as j is included in the sample for $j=1, \ldots, N$. But

$$
E\left(I_{j}\right)=P\left(I_{j}=1\right)=\frac{1}{2}
$$

and

$$
\operatorname{Var}\left(I_{j}\right)=E\left(I_{j}^{2}\right)-E^{2}\left(I_{j}\right)=E\left(I_{j}\right)-E^{2}\left(I_{j}\right)=\frac{1}{4} .
$$

Thus

$$
E(W)=\frac{1}{2} \sum_{j=1}^{N} j=\frac{N(N+1)}{4}
$$

and, since I_{1}, \ldots, I_{N} are independent,

$$
\operatorname{Var}(W)=\frac{1}{4} \sum_{j=1}^{N} j^{2}=\frac{N(N+1)(2 N+1)}{24} .
$$

4. By Chebychev's inequality, for any $\epsilon>0$, we have

$$
0 \leq P\left(\left|t_{n}-\theta\right| \geq \epsilon\right) \leq \frac{E\left(\left\{t_{n}-\theta\right\}^{2}\right)}{\epsilon^{2}}=\frac{V\left(t_{n}\right)+\left\{E\left(t_{n}\right)-\theta\right\}^{2}}{\epsilon^{2}}
$$

Since $E\left(t_{n}\right) \rightarrow \theta$ and $V\left(t_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, we have $P\left(\left|t_{n}-\theta\right| \geq \epsilon\right) \rightarrow 0$ as $n \rightarrow \infty$.
5. (a) The expectation is

$$
E(X)=\int_{-\theta}^{\theta} x f(x) d x=0
$$

The second moment is

$$
E\left(X^{2}\right)=\int_{-\theta}^{\theta} x^{2} f(x) d x=\frac{1}{5} \theta^{2}
$$

Therefore, we can match the the second moment with its sample counterpart, and

$$
\hat{\theta}=\sqrt{\frac{5}{n} \sum_{i=1}^{n} x_{i}^{2}}
$$

(b) According to the Central Limit Theorem, we have

$$
\sqrt{n}\left(n^{-1} \sum x_{i}^{2}-\mu\right) \sim N\left(0, \sigma^{2}\right), \quad \text { as } n \rightarrow \infty
$$

where $\mu=E\left(X^{2}\right)$ and $\sigma^{2}=\operatorname{var}\left(X^{2}\right)$. Noticing that $\theta=\sqrt{5 \mu}$, we have

$$
\sqrt{n}(\hat{\theta}-\theta) \sim N\left(0, \sigma^{2}(\sqrt{5} /(2 \sqrt{\mu}))^{2}\right), \quad \text { as } n \rightarrow \infty
$$

We can calculate σ^{2} as follows,

$$
\sigma^{2}=E\left(X^{4}\right)-E\left(X^{2}\right)^{2}=\frac{3}{35} \theta^{4}-\frac{1}{25} \theta^{4}=\frac{8}{175} \theta^{4}
$$

Therefore,

$$
\sqrt{n}(\hat{\theta}-\theta) \sim N\left(0,(2 / 7) \theta^{2}\right), \quad \text { as } n \rightarrow \infty
$$

6. We know that the sample mean $\bar{X} \sim N\left(\mu, \sigma^{2} / n\right)$ and the sample variance S^{2} have $(n-1) S^{2} / \sigma^{2} \sim \chi_{n-1}^{2}$. Additionally \bar{X} is independent of S^{2}. It is also known that $\left(\bar{x}, s^{2}\right)$ is a sufficient and complete statistic. Try to calculate the expectation of \bar{X}^{2} / S^{2}.

$$
\begin{aligned}
E\left(\bar{X}^{2} / S^{2}\right) & =E\left(\bar{X}^{2}\right) E\left(1 / S^{2}\right)=\left(\mu^{2}+\sigma^{2} / n\right) \cdot E\left(\frac{n-1}{\sigma^{2} \chi^{n-1}}\right) \\
& =\left(\mu^{2}+\sigma^{2} / n\right) \frac{n-1}{\sigma^{2}} \frac{1}{n-3}=\frac{n-1}{n-3}\left(\frac{\mu^{2}}{\sigma^{2}}+\frac{1}{n}\right)
\end{aligned}
$$

Therefore,

$$
E\left(\frac{n-3}{n-1} \frac{\bar{X}^{2}}{S^{2}}-\frac{1}{n}\right)=\frac{\mu^{2}}{\sigma^{2}}
$$

The UMVUE of μ^{2} / σ^{2} is $\frac{n-3}{n-1} \frac{\bar{X}^{2}}{S^{2}}-\frac{1}{n}$.
7. The log-likelihood function is

$$
\ell\left(\mu, \theta, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)^{2}
$$

The unrestricted MLEs can be solved from

$$
\begin{aligned}
\frac{\partial \ell}{\partial \mu} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)=0 \\
\frac{\partial \ell}{\partial \theta} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)=0 \\
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2}-\frac{m}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)^{2}=0
\end{aligned}
$$

Therefore, the unrestricted MLEs are

$$
\hat{\mu}=\bar{x}, \quad \hat{\theta}=\bar{y}, \quad \hat{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}+\sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2}}{m+n}
$$

If we let $\mu=2 \theta+1$, then the likelihood becomes

$$
\ell\left(\theta, \sigma^{2}\right)=-\frac{n}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(x_{i}-2 \theta-1\right)^{2}-\frac{m}{2} \log \left(2 \pi \sigma^{2}\right)-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)^{2}
$$

The restricted MLEs can be solved from

$$
\begin{aligned}
\frac{\partial \ell}{\partial \theta} & =\frac{1}{\sigma^{2}} \sum_{i=1}^{n} 2\left(x_{i}-2 \theta-1\right)+\frac{1}{\sigma^{2}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)=0 \\
\frac{\partial \ell}{\partial \sigma^{2}} & =-\frac{n}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{n}\left(x_{i}-2 \theta-1\right)^{2}-\frac{m}{2 \sigma^{2}}+\frac{1}{2 \sigma^{4}} \sum_{i=1}^{m}\left(y_{i}-\theta\right)^{2}
\end{aligned}
$$

Therefore, the restricted MLEs are

$$
\tilde{\theta}=\frac{2 n \bar{x}+m \bar{y}-2 n}{4 n+m}, \quad \tilde{\mu}=2 \tilde{\theta}+1, \quad \tilde{\sigma}^{2}=\frac{\sum_{i=1}^{n}\left(x_{i}-\tilde{x}\right)^{2}+\sum_{i=1}^{m}\left(y_{i}-\tilde{y}\right)^{2}}{m+n}
$$

The likelihood ratio test statistic is

$$
\Lambda=\frac{\ell\left(\tilde{\mu}, \tilde{\theta}, \tilde{\sigma}^{2}\right)}{\ell\left(\hat{\mu}, \hat{\theta}, \hat{\sigma}^{2}\right)}=\left(\hat{\sigma}^{2} / \tilde{\sigma}^{2}\right)^{m+n}
$$

Therefore, the rejection region is

$$
\hat{\sigma}^{2} / \tilde{\sigma}^{2}<c
$$

where c is a constant in $(0,1)$ and satisfies $P\left(\hat{\sigma}^{2} / \tilde{\sigma}^{2}<c\right)=\alpha$ if H_{0} is true.

