Preliminary Exam in Harmonic Analysis

Department of Mathematics and Statistics, Auburn University, AL 36849.

July 28, 2011

- 1. Give an example of a tight frame that is not an orthonormal basis.
- 2. If $(f_j)_{j \in J}$ is a tight frame with bound A = 1 and, moreover, $||f_j|| = 1$ for all $j \in J$, prove that $(f_j)_{j \in J}$ is an orthonormal basis.
- 3. Prove that if S is a positive bounded linear operator on a Hilbert space \mathcal{H} , and is bounded below by a strictly positive constant α , then S is invertible and its inverse S^{-1} is bounded by α^{-1} .
- 4. Let $(f_j)_{j\in J}$ be a frame on a Hilbert space \mathcal{H} with upper frame bound B. Prove that for every $f \in \mathcal{H}$, the frame operator F satisfies $||Ff||^2 \leq B||f||^2$.
- 5. State the four conditions that define a multiresolution analysis, and prove that these conditions imply that

$$\bigcap_{j\in\mathbb{Z}}V_j=\{0\}.$$

6. Let $f \in L^2(\mathbb{R})$. If for $g \in L^2(\mathbb{R})$, \hat{g} is defined by

$$\hat{g}(x) = \int_{\mathbb{R}} g(t) e^{-itx} dt$$

Prove that $\{f(t-k)\}_{k\in\mathbb{Z}}$ is an orthonormal sequence if and only if

$$\sum_{k \in \mathbb{Z}} |\hat{f}(x+2k\pi)|^2 = 1 \quad a.e.$$

- 7. Show that in the definition of multiresolution analysis, the condition ${}^{"}{{f(t-k)}_{k\in\mathbb{Z}}}$ is an orthonormal basis of V_0 " may be replaced by the condition ${}^{"}{{f(t-k)}_{k\in\mathbb{Z}}}$ is a Riesz basis of V_0 ".
- 8. Prove that if f is a 2π -periodic, continuous and piecewise smooth function, then the Fourier series of f converges to f absolutely and uniformly in \mathbb{R} .

- 9. Let $B = \{F : \mathbb{D} \to \mathbb{C}, \text{ analytic in } \mathbb{D} \text{ such that } \|F\|_B = \int_0^1 \int_0^{2\pi} |F'(re^{i\theta})| d\theta < \infty\}$ and $H' = \{F : \mathbb{D} \to \mathbb{C}, \text{ analytic in } \mathbb{D} \text{ such that } \|F\|_{H'} = \sup_{0 < r < 1} \int_0^{2\pi} |F'(re^{i\theta})| d\theta < \infty\}$ Show that B is continuously contained in H', i.e. $B \subseteq H'$ and $\|F\|_{H'} \leq \|F\|_B$.
- 10. Let f be a bounded function in $[-\pi, \pi]$ and periodic of period 2π . Show that the Fourier coefficient of f, say, a_n and b_n satisfy

$$|a_n| \le \frac{M}{n}$$
 and $|b_n| \le \frac{M}{n}$.

11. Let $L(p, \infty) = \{f : [0, 2\pi] \to \mathbb{R}; \text{ measurable so that}$ $\|f\|_{L(p,\infty)} = \sup_{t>0} t^p \mu\{x \in [0, 2\pi], |f(x)| > t\} < \infty, p \ge 1\}$ and $L^p = \{f : [0, 2\pi] \to \mathbb{R}; \text{ measurable so that}$ $\|f\|_{L^p} = \left(\int_0^{2\pi} |f(t)|^p\right)^{1/p} < \infty, p \ge 1\}.$ Show that $L^p \subseteq L(p,\infty)$ with $\|f\|_{L(p,\infty)} \le C\|f\|_{L^p}$. Give an example of a function $f \in L(1,\infty)$ so that $f \notin L^1$.

12. Prove that for each m, $\left|\sum_{n=1}^{m} \frac{\sin nx}{n}\right| \le \frac{\pi}{2} + 1$.

- 13. Define $Lip(\alpha) = \{f : [0, 2\pi] \to \mathbb{R}, \text{ periodic such that } |f(x+h) f(x)| \le Mh^{\alpha}, \ 0 < \alpha < 1\}$ and $\Lambda_{\alpha} = \{f : [0, 2\pi] \to \mathbb{R}, \text{ periodic such that } |f(x+h) - f(x)| \le Mh^{\alpha}, \ 0 < \alpha < 2\}.$ Show that:
 - a. If $\alpha > 1$, then $Lip\alpha = \{0\}$
 - b. $Lip(\beta) \subset Lip(\alpha)$ for $\alpha < \beta$.
 - c. $Lip(\alpha) \subseteq \Lambda_{\alpha}$ for $0 < \alpha < 1$.
 - d. Can you argue that Λ_{α} is equivalent as a Banach space to $Lip(\alpha)$ for $0 < \alpha < 1$.