Preliminary Exam in Harmonic Analysis

Department of Mathematics and Statistics, Auburn University, AL 36849.
July 28, 2011

1. Give an example of a tight frame that is not an orthonormal basis.
2. If $\left(f_{j}\right)_{j \in J}$ is a tight frame with bound $A=1$ and, moreover, $\left\|f_{j}\right\|=1$ for all $j \in J$, prove that $\left(f_{j}\right)_{j \in J}$ is an orthonormal basis.
3. Prove that if S is a positive bounded linear operator on a Hilbert space \mathcal{H}, and is bounded below by a strictly positive constant α, then S is invertible and its inverse S^{-1} is bounded by α^{-1}.
4. Let $\left(f_{j}\right)_{j \in J}$ be a frame on a Hilbert space \mathcal{H} with upper frame bound B. Prove that for every $f \in \mathcal{H}$, the frame operator F satisfies $\|F f\|^{2} \leq B\|f\|^{2}$.
5. State the four conditions that define a multiresolution analysis, and prove that these conditions imply that

$$
\bigcap_{j \in \mathbb{Z}} V_{j}=\{0\}
$$

6. Let $f \in L^{2}(\mathbb{R})$. If for $g \in L^{2}(\mathbb{R}), \hat{g}$ is defined by

$$
\hat{g}(x)=\int_{\mathbb{R}} g(t) e^{-i t x} d t,
$$

Prove that $\{f(t-k)\}_{k \in \mathbb{Z}}$ is an orthonormal sequence if and only if

$$
\sum_{k \in \mathbb{Z}}|\hat{f}(x+2 k \pi)|^{2}=1 \quad \text { a.e. }
$$

7. Show that in the definition of multiresolution analysis, the condition " $\{f(t-k)\}_{k \in \mathbb{Z}}$ is an orthonormal basis of V_{0} " may be replaced by the condition " $\{f(t-k)\}_{k \in \mathbb{Z}}$ is a Riesz basis of V_{0} ".
8. Prove that if f is a 2π-periodic, continuous and piecewise smooth function, then the Fourier series of f converges to f absolutely and uniformly in \mathbb{R}.
9. Let $B=\left\{F: \mathbb{D} \rightarrow \mathbb{C}\right.$, analytic in \mathbb{D} such that $\left.\|F\|_{B}=\int_{0}^{1} \int_{0}^{2 \pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right| d \theta<\infty\right\}$ and $H^{\prime}=\left\{F: \mathbb{D} \rightarrow \mathbb{C}\right.$, analytic in \mathbb{D} such that $\left.\|F\|_{H^{\prime}}=\sup _{0<r<1} \int_{0}^{2 \pi}\left|F^{\prime}\left(r e^{i \theta}\right)\right| d \theta<\infty\right\}$ Show that B is continuously contained in H^{\prime}, i.e. $B \subseteq H^{\prime}$ and $\|F\|_{H^{\prime}} \leq\|F\|_{B}$.
10. Let f be a bounded function in $[-\pi, \pi]$ and periodic of period 2π. Show that the Fourier coefficient of f, say, a_{n} and b_{n} satisfy

$$
\left|a_{n}\right| \leq \frac{M}{n} \quad \text { and } \quad\left|b_{n}\right| \leq \frac{M}{n}
$$

11. Let $L(p, \infty)=\{f:[0,2 \pi] \rightarrow \mathbb{R}$; measurable so that $\left.\|f\|_{L(p, \infty)}=\sup _{t>0} t^{p} \mu\{x \in[0,2 \pi], \quad|f(x)|>t\}<\infty, \quad p \geq 1\right\}$ and $L^{p}=\{f:[0,2 \pi] \rightarrow \mathbb{R} ;$ measurable so that $\left.\|f\|_{L^{p}}=\left(\int_{0}^{2 \pi}|f(t)|^{p}\right)^{1 / p}<\infty, \quad p \geq 1\right\}$.
Show that $L^{p} \subseteq L(p, \infty)$ with $\|f\|_{L(p, \infty)} \leq C\|f\|_{L^{p}}$. Give an example of a function $f \in L(1, \infty)$ so that $f \notin L^{1}$.
12. Prove that for each $m,\left|\sum_{n=1}^{m} \frac{\sin n x}{n}\right| \leq \frac{\pi}{2}+1$.
13. Define $\operatorname{Lip}(\alpha)=\{f:[0,2 \pi] \rightarrow \mathbb{R}$, periodic such that $|f(x+h)-f(x)| \leq$ $\left.M h^{\alpha}, \quad 0<\alpha<1\right\}$ and
$\Lambda_{\alpha}=\left\{f:[0,2 \pi] \rightarrow \mathbb{R}, \quad\right.$ periodic such that $|f(x+h)-f(x)| \leq M h^{\alpha}, \quad 0<$ $\alpha<2\}$.
Show that:
a. If $\alpha>1$, then Lip $\alpha=\{0\}$
b. $\operatorname{Lip}(\beta) \subset \operatorname{Lip}(\alpha)$ for $\alpha<\beta$.
c. $\operatorname{Lip}(\alpha) \subseteq \Lambda_{\alpha}$ for $0<\alpha<1$.
d. Can you argue that Λ_{α} is equivalent as a Banach space to $\operatorname{Lip}(\alpha)$ for $0<\alpha<1$.
