Linear Algebra Preliminary Examination, Spring 2000 (May 13) Professor T.Y. Tam

Student's Name:
Choose THREE.

1. (a) Define majorization between $x, y \in \mathbb{R}^{n}$. Give two equivalent statements for $x \prec y$ other than Schur-Horn's result. (5 points)
(b) State Schur-Horn's result. (4 points)
(c) By Schur's result, prove Ky Fan's maximum principle for an $n \times n$ Hermitian A :

$$
\sum_{j=1}^{k} \lambda_{j}^{\downarrow}(A)=\max _{\left\{x_{1}, \ldots, x_{k}\right\} \text { o.n. in } \mathbb{C}^{n}} \sum_{j=1}^{k} x_{j}^{*} A x_{j}, \quad k=1, \ldots, n, \quad \text { (} 6 \text { points) }
$$

(d) Deduce from (c) that if A and B are $n \times n$ Hermitian matrices, $\lambda^{\downarrow}(A+B) \prec$ $\lambda^{\downarrow}(A)+\lambda^{\downarrow}(B)$ where $\lambda^{\downarrow}(A)$ denotes the eigenvalue element of A whose entries are arranged in descending order. (5 points)
(e) Deduce from (d) the corresponding result for the singular values of $A+B, A$ and B if A and B are $n \times n$ complex matrices and prove it by using Wieldant's matrix $\left(\begin{array}{cc}0 & A \\ A^{*} & 0\end{array}\right) . \quad$ (5 points)
2. (a) State Marriage Theorem (Hall's Theorem) on compatible matching. (5 points)
(b) From Marriage Theorem derive König-Frobenius Theorem: Let $A=\left(a_{i j}\right)$ be an $n \times n$ matrix. If $\sigma \in S_{n},\left(a_{1 \sigma(1)}, \ldots, a_{n \sigma(n)}\right)$ is called a diagonal of A. Every diagonal of A contains a zero element if and only if A has a $k \times \ell$ submatrix with all entries zero for some k, ℓ such that $k+\ell>n$. (7 points)
(c) Show that the set of $n \times n$ doubly stochastic matrices, Ω_{n}, is a convex set. (4 points)
(d) Prove, by using König-Frobenius Theorem, that the extreme points of Ω are the permutation matrices. (9 points)
3. (a) Define symmetric gauge functions $\Phi: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$. (4 points)
(b) Are symmetric gauge functions continuous? Why? (2 points)
(c) Show that a norm $\|\cdot\|: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$is absolute, i.e., $\|x\|=\||x|\|$ for all $x \in \mathbb{C}^{n}$ if and only if it is montone, i.e., $\|x\| \leq\|y\|$ whenever $|x| \leq|y|$. Then deduce that symmetric gauge functions is monotone. (8 points)
(d) Prove that if $x, y \in \mathbb{R}_{+}^{n}$, then $x \prec_{w} y$ if and only if $\Phi(x) \leq \Phi(y)$ for every symmetric gauge function Φ. (6 points)
(e) Using (d) to show that $\Phi_{\infty}(x) \leq \Phi(x) \leq \Phi_{1}(x)$ for any symmetric gauge function Φ where $\Phi_{\infty}(x)=\max _{j=1, \ldots, n}\left|x_{j}\right|$ and $\Phi_{1}(x)=\sum_{j=1}^{n}\left|x_{j}\right|$ (Hint: You may assume that $x \in \mathbb{R}_{+}^{n}$). (5 points)
4. (a) Define $|A|$ and polar decomposition of A via singular value decomposition. (4 points)
(b) Prove Fan-Hoffman's theorem: If $A \in \mathbb{C}_{n \times n}$, then $\lambda_{j}^{\downarrow}(\operatorname{Re}(A)) \leq s_{j}(A), j=$ $1, \ldots, n$, where $\lambda_{j}^{\downarrow}(A)$ denotes the j th largest eigenvalue of $\operatorname{Re} A=\frac{1}{2}\left(A+A^{*}\right)$ and s_{j} denotes the j th largest singular value of A. (7 points)
(c) Prove $|\lambda(\operatorname{Re} A)| \prec_{w} s(A)$ (Hint: Ky Fan's k-norm). (5 points)
(d) Let X, Y be Hermitan matrices. Suppose that their eigenvalues can be arranged so that $\lambda_{j}(X) \leq \lambda_{j}(Y)$ for all j. Show that there exists a unitary U such that $X \leq U^{*} Y U$, i.e., $U^{*} Y U-X$ is p.s.d. (3 points)
(e) Use (b) and (d) to show that for each A there exists a unitary U such that $\operatorname{Re} A \leq U^{*}|A| U . \quad(2$ points)
(f) Then use (e) to prove Thompson's Theorem: If $A, B \in \mathbb{C}_{n \times n}$, then $|A+B| \leq$ $U^{*}|A| U+V^{*}|B| V$ for some unitary U and V. (4 points)
5. Let Φ be a norm on \mathbb{C}^{n}.
(a) Define the dual norm Φ^{\prime} of Φ. (3 points)
(b) Show that Φ^{\prime} is a norm. (5 points)
(c) What is the dual norm of Φ_{p}, the ℓ_{p} norm, $1 \leq p \leq \infty$? (2 points)
(d) Show that $|(x, y)| \leq \min \left\{\Phi^{\prime}(x) \Phi(y), \Phi(x) \Phi^{\prime}(y)\right\}$ for all $x, y \in \mathbb{C}^{n}$. (5 points)
(e) Then show that $\Phi^{\prime \prime}(x) \leq \Phi(x)$ for all $x \in \mathbb{C}^{n}$. (4 points)
(f) Show that if Φ and Ψ are two norms such that $\Phi(x) \leq c \Psi(x)$ for all $x \in \mathbb{C}^{n}$ and for some $c>0$, then $\Phi^{\prime}(x) \geq c^{-1} \Psi^{\prime}(x)$ for all $x \in \mathbb{C}^{n}$. (6 points)
6. (a) Define Schatten p-norm $\|\cdot\|_{p}$ and Ky Fan k-norm $\|\cdot\|_{(k)}$. Are they unitary invariant (u.i.) norms? (4 points)
(b) Given a symmetric gauge function Φ on \mathbb{R}^{n}, define $\|\cdot\|_{\Phi}: \mathbb{C}_{n \times n} \rightarrow \mathbb{R}_{+}$by $\|A\|_{\Phi}=$ $\Phi(s(A))$. Show that $\|\cdot\|$ is a unitarily invariant norm such that $\|\operatorname{diag}(1,0, \ldots, 0)\|=$ 1. (7 points)
(c) Given a unitarily invariant norm $\|\cdot\|: \mathbb{C}_{n \times n} \rightarrow \mathbb{R}$ such that $\|\operatorname{diag}(1,0, \ldots 0)\|=1$, define $\Phi: \mathbb{C}^{n} \rightarrow \mathbb{R}_{+}$by $\Phi_{\|\cdot\|}(x)=\|\operatorname{diag} x\|$. Show that $\Phi_{\|\cdot\|}$ is a symmetric gauge function. (6 points)
Remark: Part (b) and (c) constitute von Neumann's Theorem on the characterization of u.i. norms.
(d) Show that (i) $\Phi_{\|\cdot\|_{\Phi}}=\Phi$ if Φ is a symmetric gauge function and (ii) $\|\cdot\|_{\Phi_{\|\cdot\|}}=\|\cdot\|$ if $\|\cdot\|$ is a unitarily invariant norm. (8 points)

