Student's Name:

Choose THREE.

- 1. (a) Define majorization between $x, y \in \mathbb{R}^n$. Give two equivalent statements for $x \prec y$ other than Schur-Horn's result. (5 points)
 - (b) State Schur-Horn's result. (4 points)
 - (c) By Schur's result, prove Ky Fan's maximum principle for an $n \times n$ Hermitian A:

$$\sum_{j=1}^{k} \lambda_{j}^{\downarrow}(A) = \max_{\{x_{1},\dots,x_{k}\} \text{ o.n. in } \mathbb{C}^{n}} \sum_{j=1}^{k} x_{j}^{*}Ax_{j}, \quad k = 1,\dots,n, \quad (6 \text{ points})$$

- (d) Deduce from (c) that if A and B are $n \times n$ Hermitian matrices, $\lambda^{\downarrow}(A + B) \prec \lambda^{\downarrow}(A) + \lambda^{\downarrow}(B)$ where $\lambda^{\downarrow}(A)$ denotes the eigenvalue element of A whose entries are arranged in descending order. (5 points)
- (e) Deduce from (d) the corresponding result for the singular values of A + B, A and B if A and B are $n \times n$ complex matrices and prove it by using Wieldant's matrix $\begin{pmatrix} 0 & A \\ A^* & 0 \end{pmatrix}$. (5 points)
- 2. (a) State Marriage Theorem (Hall's Theorem) on compatible matching. (5 points)
 - (b) From Marriage Theorem derive König-Frobenius Theorem: Let $A = (a_{ij})$ be an $n \times n$ matrix. If $\sigma \in S_n$, $(a_{1\sigma(1)}, \ldots, a_{n\sigma(n)})$ is called a diagonal of A. Every diagonal of A contains a zero element if and only if A has a $k \times \ell$ submatrix with all entries zero for some k, ℓ such that $k + \ell > n$. (7 points)
 - (c) Show that the set of $n \times n$ doubly stochastic matrices, Ω_n , is a convex set. (4 points)
 - (d) Prove, by using König-Frobenius Theorem, that the extreme points of Ω are the permutation matrices. (9 points)
- 3. (a) Define symmetric gauge functions $\Phi : \mathbb{R}^n \to \mathbb{R}_+$. (4 points)
 - (b) Are symmetric gauge functions continuous? Why? (2 points)
 - (c) Show that a norm $\|\cdot\| : \mathbb{C}^n \to \mathbb{R}_+$ is absolute, i.e., $\|x\| = \||x\|\|$ for all $x \in \mathbb{C}^n$ if and only if it is montone, i.e., $\|x\| \le \|y\|$ whenever $|x| \le |y|$. Then deduce that symmetric gauge functions is monotone. (8 points)
 - (d) Prove that if $x, y \in \mathbb{R}^n_+$, then $x \prec_w y$ if and only if $\Phi(x) \leq \Phi(y)$ for every symmetric gauge function Φ . (6 points)

- (e) Using (d) to show that $\Phi_{\infty}(x) \leq \Phi(x) \leq \Phi_1(x)$ for any symmetric gauge function Φ where $\Phi_{\infty}(x) = \max_{j=1,\dots,n} |x_j|$ and $\Phi_1(x) = \sum_{j=1}^n |x_j|$ (Hint: You may assume that $x \in \mathbb{R}^n_+$). (5 points)
- (a) Define |A| and polar decomposition of A via singular value decomposition. (4 points)
 - (b) Prove Fan-Hoffman's theorem: If $A \in \mathbb{C}_{n \times n}$, then $\lambda_j^{\downarrow}(\operatorname{Re}(A)) \leq s_j(A)$, $j = 1, \ldots, n$, where $\lambda_j^{\downarrow}(A)$ denotes the *j*th largest eigenvalue of $\operatorname{Re} A = \frac{1}{2}(A + A^*)$ and s_j denotes the *j*th largest singular value of A. (7 points)
 - (c) Prove $|\lambda(\operatorname{Re} A)| \prec_w s(A)$ (Hint: Ky Fan's k-norm). (5 points)
 - (d) Let X, Y be Hermitan matrices. Suppose that their eigenvalues can be arranged so that $\lambda_j(X) \leq \lambda_j(Y)$ for all j. Show that there exists a unitary U such that $X \leq U^*YU$, i.e., $U^*YU - X$ is p.s.d. (3 points)
 - (e) Use (b) and (d) to show that for each A there exists a unitary U such that $\operatorname{Re} A \leq U^* |A| U$. (2 points)
 - (f) Then use (e) to prove Thompson's Theorem: If $A, B \in \mathbb{C}_{n \times n}$, then $|A + B| \leq U^*|A|U + V^*|B|V$ for some unitary U and V. (4 points)
- 5. Let Φ be a norm on \mathbb{C}^n .
 - (a) Define the dual norm Φ' of Φ . (3 points)
 - (b) Show that Φ' is a norm. (5 points)
 - (c) What is the dual norm of Φ_p , the ℓ_p norm, $1 \le p \le \infty$? (2 points)
 - (d) Show that $|(x,y)| \le \min\{\Phi'(x)\Phi(y), \Phi(x)\Phi'(y)\}\$ for all $x, y \in \mathbb{C}^n$. (5 points)
 - (e) Then show that $\Phi''(x) \leq \Phi(x)$ for all $x \in \mathbb{C}^n$. (4 points)
 - (f) Show that if Φ and Ψ are two norms such that $\Phi(x) \leq c\Psi(x)$ for all $x \in \mathbb{C}^n$ and for some c > 0, then $\Phi'(x) \geq c^{-1}\Psi'(x)$ for all $x \in \mathbb{C}^n$. (6 points)
- 6. (a) Define Schatten *p*-norm $\|\cdot\|_p$ and Ky Fan *k*-norm $\|\cdot\|_{(k)}$. Are they unitary invariant (u.i.) norms? (4 points)
 - (b) Given a symmetric gauge function Φ on \mathbb{R}^n , define $\|\cdot\|_{\Phi} : \mathbb{C}_{n \times n} \to \mathbb{R}_+$ by $\|A\|_{\Phi} = \Phi(s(A))$. Show that $\|\cdot\|$ is a unitarily invariant norm such that $\|\text{diag}(1, 0, \dots, 0)\| = 1$. (7 points)
 - (c) Given a unitarily invariant norm $\|\cdot\| : \mathbb{C}_{n \times n} \to \mathbb{R}$ such that $\|\text{diag}(1, 0, \dots, 0)\| = 1$, define $\Phi : \mathbb{C}^n \to \mathbb{R}_+$ by $\Phi_{\|\cdot\|}(x) = \|\text{diag } x\|$. Show that $\Phi_{\|\cdot\|}$ is a symmetric gauge function. (6 points)

Remark: Part (b) and (c) constitute von Neumann's Theorem on the characterization of u.i. norms.

(d) Show that (i) $\Phi_{\|\cdot\|_{\Phi}} = \Phi$ if Φ is a symmetric gauge function and (ii) $\|\cdot\|_{\Phi_{\|\cdot\|}} = \|\cdot\|$ if $\|\cdot\|$ is a unitarily invariant norm. (8 points)