Graph Theory Prelim - 2008

1. In each of the following, prove or disprove the assertion.
a. Every connected simple graph G has a spanning tree with the same maximum degree as G.
b. Every connected simple graph G has a spanning tree with the same minimum degree as G.
c. Every connected simple graph G has a spanning tree with the same domination number as G.
d. Every connected simple graph G has a spanning tree with the same vertex independence number as G.
2. Recall that a vertex-covering of G is a set of vertices S such that each edge in G is incident with a vertex in S. For a simple graph G, let $\alpha(G)$ denote the vertex independence number, let $\beta(G)$ denote the vertexcovering number, let $\alpha^{\prime}(G)$ denote the edge-independence number and $\beta^{\prime}(G)$ denote the edge-covering number. Let the number of vertices in G be n.
a. Show that $\dot{\alpha}(G)+\beta(G)=n$. (Hint: Consider complements of independent sets and of coverings.)
b. Show that if G has no isolated vertices then $\alpha^{\prime}(G)+\beta^{\prime}(G)=n$.
c. If G is a tree with exactly 14 edges, and $\alpha^{\prime}(G)=4$, then find $\dot{\alpha}(G), \beta(G)$ and $\beta^{\prime}(G)$, giving reasons for your answers. (Hint: For bipartite graphs there is also an equality that involves 2 more of these 4 parameters that you probably know.)
3. Throughout this question, all graphs are simple.
a. For positive integers s, t, u with $s \leq t \leq u$, describe a graph with $\kappa=s, \kappa{ }^{\prime}=t$, and $\delta=u$.
b. Show that $\kappa^{\prime} \leq \delta$.
c. Let the number of vertices in G be n. Show that if $\delta(G) \geq n / 2$ then $\kappa^{\prime}=\delta$. (Hint: count the sum of the degrees of the vertices in C in two ways, where C is a smallest component after a minimum edge-cut is removed from G.)
4. Let B be a bipartite graph with $\delta \geq 1$.
a. Show that there exists an edge-coloring of B with δ colors such that for each vertex v and for each color c there exists an edge incident with v colored c.
b. Show that if B is k-regular for some positive integer k, and if there exist positive integers k_{l}, \ldots, k_{x} which add to k, then there exists an edge-coloring of B such that the $i^{\text {th }}$ color class is a k_{i}-factor for $1 \leq i \leq x$.
c. Show that the property in Question $4 b$ is not necessarily true if B is not bipartite.
5. Show that:
a. If G is Hamiltonian then for all subsets S of $V(G)$ the number of components in $G-S$ is at most $|S|$.
b. Suppose G is a connected simple graph containing a path P of length $s \leq n-2$, where n is the number of vertices in G . Show that if the sum of the degrees of the first and last vertices in P is at least n, then G contains a path of length $s+1$.
