PRELIMINARY EXAMINATION

Real Analysis
Summer 08
Time: 3 hours

Note 1: Please solve 3 problems from part 1, 3 problems from part 2 and 2 problem

 from part 3Note 2: You may solve as many problems you possibly can, if you have the time

Part 1

1. State the Radon-Nikodyn theorem and give an application. Elaborate your application.
2. Let $L_{1}[0,1]$, the Lebesgue space of integrable functions on the interval $[0,1]$ with the Lebesgue measure, and let φ be a bounded linear functional on $L_{1}[0,1]$. Define the function by $\mathrm{g}(\mathrm{x})=\varphi\left(\chi_{[0, x]}\right)$. Show that g is absolutely continuous on the interval $[0,1]$.
3. a) Let X de a normed space and $T: R^{n} \rightarrow X$ be a linear transformation. Show that there is a positive constant M , so that $\|T X\|_{X} \leq M\|X\|_{R^{n}}$
b) Let $\left\|\|_{1}\right.$ and $\| \|_{2}$ be any two norms in R^{n}. Show that there are positive constants M, N So that $M\|x\|_{1} \leq\|x\|_{2} \leq N\|x\|_{1}$.
c) φ is a bounded linear functional on R^{n} if and only if there is a unique $y \in R^{n}$, so that

$$
\varphi(x)=\sum_{i=1}^{n} x_{i} y_{i}, \text { and }\|\varphi\|=\|y\|_{R^{n}} .
$$

4. let $(X, \mathrm{~A}, \mu)$ be a measure space and $L_{p}=L_{p}(X, \mathrm{~A}, \mu)$. Given $p, r \in[1, \infty)$ with $\mathrm{p} \geq \mathrm{r}$ and a Measurable function g . Show that $T: L_{p} \rightarrow L_{r}$ defined by $\mathrm{T}(\mathrm{f})=\mathrm{g}$.f is bounded if and only if $g \in L_{s}$ where $\frac{1}{s}=\frac{1}{r}-\frac{1}{p}$.
5. A sequence $\left(f_{n}\right)$ of real valued measurable functions is said do converges in measure to a function f is for every $\varepsilon>0 \lim _{n \rightarrow \infty} \mu\left\{x \varepsilon X:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\}=0$.

If $\mu(X)<\infty$, show that a sequence $\left(f_{n}\right)$ converges in measure to a function f , if and only if $r\left(f_{n}-f\right) \rightarrow 0$, as n tends to ∞, wherer $(f)=\int_{x} \frac{|f(x)|}{1+|f(x)|} d \mu(x)$.

Part 2

1. (a) State Heine-Borel Theorem and use it to prove that if f is a real-valued function defined and continuous on a closed and bounded set F of real numbers then f is uniformly continuous on F.
(b) Let $\left\langle f_{n}\right\rangle$ be a sequence of continuous functions defined on a set E. Prove that if $\left\langle f_{n}\right\rangle$ converges uniformly to f on E, then f is continuous on E.
2. Let $E \subset[0,1]$ be a measurable set and let $E \dot{+} y=\{z: z=x \dot{+} y$ for some $x \in E\}$ be the translate modulo 1 of E. Prove that for each $y \in[0,1]$, the set $E \dot{+} y$ is measurable and $m(E+y)=m E$. Use this result to construct a nonmeasurable set.
3. (a) If $\left\{A_{n}\right\}$ is a countable collection of sets of real numbers, then prove that

$$
m^{*}\left(\bigcup A_{n}\right) \leq \sum m^{*} A_{n}
$$

Use the above result to prove that the set $[0,1]$ is uncountable.
(b) Let f be a measurable function and $f=g$ almost everywhere. Prove that the function g is measurable.
4. (a) State and prove Fatou's Lemma and use this to prove Lebesgue Monotone Convergence Theorem, that is, if $\left\langle f_{n}\right\rangle$ is an increasing sequence of nonnegative measurable functions $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$ a.e., then

$$
\int f=\lim _{n \rightarrow \infty} \int f_{n}
$$

(b) Let f be a nonnegative function which is integrable over a set E. Then prove that for given $\epsilon>0$ there is a $\delta>0$ such that for every set $A \subset E$ with $m A<\delta$ we have

$$
\int_{A} f<\epsilon .
$$

Part 3

1. Consider a series $\sum_{k=1}^{\infty} a_{k}(x)$, where the functions $a_{k}(x) \geq 0$ are measurable for every $\mathrm{k} \geq 1$. Prove that $\int_{R} \sum_{k=1}^{\infty} a_{k}(x) d x=\sum_{k=1}^{\infty} \int_{R} a_{k}(x) d x$.
If $\sum_{k=1}^{\infty} \int_{R} a_{k}(x) d x$ is finite, prove that he series $\sum_{k=1}^{\infty} a_{k}(x)$ converges for almost everywhere.
2. Suppose f is a non-negative measurable function, and $\left(f_{n}\right)$ a sequence of nonnegative measurable functions with $f_{n}(x) \leq f(x)$ and $f_{n}(x) \rightarrow f(x)$ almost everywhere as $n \rightarrow \infty$. Prove that $\lim _{n \rightarrow \infty} \int_{R} f_{n}(x) d x=\int_{R} f(x) d x$.
3. Suppose f is integrable on R^{n}. Prove that for every $\varepsilon>0$,
a) There exists a set of finite measure B (a ball, for example) such that

$$
\int_{B^{c}}|f(x)| d x<\varepsilon .
$$

b) There is a $\delta>0$ such that $\int_{E}|f(x)| d x<\varepsilon$ whenever $|E|<\delta$, where $|E|$ denotes the measure of the set E .

