PRELIMINARY EXAMINATION

Real Analysis Time: 3 hours Summer 08 August 02, 2008

Note 1: Please <u>solve 3 problems from part 1</u>, <u>3 problems from part 2</u> and <u>2 problem</u> <u>from part 3</u>

Note 2: You may solve as many problems you possibly can, if you have the time

Part 1

- 1. State the Radon-Nikodyn theorem and give an application. Elaborate your application.
- 2. Let $L_1[0,1]$, the Lebesgue space of integrable functions on the interval [0,1] with the Lebesgue measure, and let φ be a bounded linear functional on $L_1[0,1]$. Define the function by $g(x) = \varphi(\chi_{[0,x]})$. Show that g is absolutely continuous on the interval [0,1].
- 3. a) Let X de a normed space and $T : \mathbb{R}^n \to X$ be a linear transformation. Show that there is a positive constant M, so that $||Tx||_X \le M ||x||_{\mathbb{R}^n}$
 - b) Let $\| \|_1$ and $\| \|_2$ be any two norms in \mathbb{R}^n . Show that there are positive constants M, N So that $M \|x\|_1 \le \|x\|_2 \le N \|x\|_1$.
 - c) φ is a bounded linear functional on \mathbb{R}^n if and only if there is a unique $y \in \mathbb{R}^n$, so that $\varphi(x) = \sum_{i=1}^n x_i y_i$, and $\|\varphi\| = \|y\|_{\mathbb{R}^n}$.
- 4. let (X, A, μ) be a measure space and $L_p = L_p(X, A, \mu)$. Given $p, r \in [1, \infty)$ with $p \ge r$ and a Measurable function g. Show that $T : L_p \to L_r$ defined by T(f) = g.f is bounded if and only if $g \in L_s$ where $\frac{1}{s} = \frac{1}{r} \frac{1}{p}$.
- 5. A sequence (f_n) of real valued measurable functions is said do converges in measure to a function f is for every $\varepsilon > 0$ $\lim_{n \to \infty} \mu \{x \in X : |f_n(x) f(x)| \ge \varepsilon \} = 0$.

If $\mu(X) < \infty$, show that a sequence (f_n) converges in measure to a function f, if and only if $r(f_n - f) \to 0$, as n tends to ∞ , where $r(f) = \int_X \frac{|f(x)|}{1 + |f(x)|} d\mu(x)$.

- (a) State Heine-Borel Theorem and use it to prove that if f is a real-valued function defined and continuous on a closed and bounded set F of real numbers then f is uniformly continuous on F.
 - (b) Let $\langle f_n \rangle$ be a sequence of continuous functions defined on a set E. Prove that if $\langle f_n \rangle$ converges uniformly to f on E, then f is continuous on E.
- 2. Let $E \subset [0, 1]$ be a measurable set and let $E + y = \{z : z = x + y \text{ for some } x \in E\}$ be the translate modulo 1 of E. Prove that for each $y \in [0, 1]$, the set E + y is measurable and m(E + y) = mE. Use this result to construct a nonmeasurable set.
- 3. (a) If $\{A_n\}$ is a countable collection of sets of real numbers, then prove that

$$m^*(\bigcup A_n) \le \sum m^*A_n.$$

Use the above result to prove that the set [0, 1] is uncountable.

- (b) Let f be a measurable function and f = g almost everywhere. Prove that the function g is measurable.
- (a) State and prove Fatou's Lemma and use this to prove Lebesgue Monotone Convergence Theorem, that is, if < f_n > is an increasing sequence of nonnegative measurable functions f(x) = lim_{n→∞} f_n(x) a.e., then

$$\int f = \lim_{n \to \infty} \int f_n.$$

(b) Let f be a nonnegative function which is integrable over a set E. Then prove that for given ε > 0 there is a δ > 0 such that for every set A ⊂ E with mA < δ we have

$$\int_A f < \epsilon.$$

Part 3

- 1. Consider a series $\sum_{k=1}^{\infty} a_k(x)$, where the functions $a_k(x) \ge 0$ are measurable for every k ≥ 1 . Prove that $\int_R \sum_{k=1}^{\infty} a_k(x) dx = \sum_{k=1}^{\infty} \int_R a_k(x) dx$. If $\sum_{k=1}^{\infty} \int_R a_k(x) dx$ is finite, prove that he series $\sum_{k=1}^{\infty} a_k(x)$ converges for almost everywhere.
- 2. Suppose f is a non-negative measurable function, and (f_n) a sequence of nonnegative measurable functions with $f_n(x) \le f(x)$ and $f_n(x) \to f(x)$ almost everywhere as $n \to \infty$. Prove that $\lim_{n \to \infty} \int_R f_n(x) dx = \int_R f(x) dx$.
- 3. Suppose f is integrable on \mathbb{R}^n . Prove that for every $\varepsilon > 0$,
 - a) There exists a set of finite measure B (a ball, for example) such that $\int_{B^c} |f(x)| dx < \varepsilon.$
 - b) There is a $\delta > 0$ such that $\int_{E} |f(x)| dx < \varepsilon$ whenever $|E| < \delta$, where |E| denotes the measure of the set E.