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Abstract: Using a path integral formalism, ion dynamics effects are taken into account for the broadening of spectral
lines in a plasma. A compact expression of the dipole autocorrelation function is derived for the Lyman alpha line of
hydrogen. The static and the impact regime for the ions may be recovered by our approach. For a regime intermediate
between the static and impact case we compare our approach to a profile obtained by a numerical simulation.
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1. INTRODUCTION

The spectral line shapes of radiative atoms and ions in
the plasma provide valuable diagnostic tools for a number
of physical quantities, such as the density and temperature
of charged particles, the transported radiative energy, and
possibly the determination of electric fields [1]. The shape
of lines in a plasma results from the interactions between
the radiator and all constituents (neutrals, electrons and
ions) of the plasma. With variable contributions
depending on plasma conditions, causes of broadening
are the Doppler effect, which is produced by the
movement of the radiator, natural broadening, due to the
finite lifetime of the atomic excited state, and what will
be the focus of this paper, the Stark broadening which is
due to the interaction between the radiator and the electric
field of the two kind of perturbers (ions-electrons) [2].
This problem has been widely studied using the standard
Hamiltonian approach of quantum mechanics. It started
with the work of Baranger [3], and Kolb and Griem [4].
In these classic papers on Stark broadening, the electrons
are treated within the impact theory, and the ions in the
quasi-static approximation. Both kind of particles having
a Coulomb interaction with the radiator, the difference
between ions and electrons is merely due to their velocity
difference. For many plasma conditions, ions are slow

enough to justify the use of a quasi-static approximation.
But for hydrogen plasmas with rather low density, and/
or high temperature, this static approximation may
however no longer be valid. In our investigation, we
introduce an alternative method able to take into account
the effect of ion dynamics. This method is based on the
Feynman path integral formalism [5] which deals with
electrons and ions on the same physical basis. The general
frame for this formalism has been previously developed
[6], but has then only be applied to the static ion case.
Using this formalism, one can treat time-independent and
time-dependent problems on the same footing, which is
a real advantage over the standard Hamiltonian approach
when solving time-dependent problems. For the purpose
of comparing our results to a simulation for a simple line,
we apply our formalism to the Lyman alpha line of
hydrogen or hydrogen-like ions.

Our paper is organized as follows: in part two, we
derive the time dipolar autocorrelation function (TDAF)
taking into account the dynamical effects of ions, which
are represented by the time microfield autocorrelation
function (TMAF), and discuss in part 3 the behaviour of
our result in the static and impact limits for ions. In part
4, we apply our model to a case intermediate between
the static and impact limits, and compare the obtained
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line shape to a reference profile obtained with a computer
simulation technique.

2. THE TIME DIPOLAR AUTOCORRELATION
 FUNCTION

We start here by deriving a path integral expression for
the time dipolar autocorrelation function (TDAF) of the
radiator from which the spectral line shapes are generally
deduced. The emitter is perturbed by ions and electrons
treated as charged particles moving on classical paths.
For a description of the radiator-perturber interaction, it
is usually sufficient to keep only the first term in the
multipole expansion, using the so-called dipolar
approximation. As quoted before, the effect of the
electrons is usually treated with the impact theory by a
collision operator. Our path integral approach could be
applied to both electrons and ions, but we shall also use
an impact approximation for the electrons in our
numerical calculations. The electric microfield appearing
in our formalism could thus be created by the electrons,
the ions or both kind of particles.

As mentioned above, the main quantity in the study
of spectral line shapes is the TDAF defined, for Lyman
alpha without the fine structure by the following formula:

C (s) = ( ) ( ){ } *exp / , 0 ,bise d T s dαβ α α′β

αα′β

− α α′∑  


... (1)

where d is the dipole operator, T is the evolution operator
considered here to possess matrix elements only between
substates α. The summation runs over all the upper states
α, α′, and the subscript av means that we must take a
statistical average over the perturbers. The energy of the
lower unperturbed level is noted εβ. As we are interested
in the Lyman alpha line, we shall sum in (1) only over
the states α, since the lower state is unperturbed, and we
neglect the interaction between levels with different
principal quantum numbers. Using the Wigner-Eckart
theorem, we obtain in the |n, l, m> representation:

C (s) = (1/3) ( )
2

exp / 21 10is dβ− ε




{ } { }( )210 210 2 211 211
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T T+

... (2)

A reduced dipole matrix element appears in this
expression, as well as two terms of the evolution operator.

Let us compute first the matrix element { }211 211
av

T

which can be written as:
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T
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dydy y y K y s y∗
211′ϕ ϕ ′ ′, 0∫∫

... (3)

where K (y, s; y', 0) is the Feynman propagator given by:
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In this expression, ( )E τ


 is the electric field due to

all components of plasma acting on the radiator, e and
me denote the electron charge and mass, and Z is the
charge number of the radiator nucleus. Knowing the
initial propagator relative to the unperturbed hydrogen-
like ion,
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it is possible to develop the propagator K (y, s; y′, 0) as a
series:
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with 1 0,ky y y y+ = = ′
   

. The expression for K0 is known
[7], and involves the hydrogen wavefunctions:

( )0 1 1, ; ,j j j jK y y+ +τ τ

= ( ) ( )*
1n j n j

n

y y+ϕ ϕ∑
( )1exp n j ji +

 − ε τ − τ  ... (7)

Replacing the propagator K0 by its expression,
integrating over y and y', and using the orthogonality of

the wave functions we get for { }211 211
av

T :
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Let us examine the structure of the first terms in this
expansion. Calling Uk the successive terms in the sum
over k in Eq. 8, we can write the first four terms as:

• term k = 0 : Uk = 0 = 1

• term k = 1 : Uk = 1

= ( ) ( )
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where we have used the selection rule for the orbital
moment l.

• term k = 2
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only the state α2 = 200 contributes in the summation. We
can thus write:
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• term k = 3:
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Applying the selection rule imposes that α2 = α3= 200
only contribute in Eq. 12, which means that Uk = 3 = 0.

Following then step by step all the terms, we can
show that all the odd terms vanish, and only even terms
in Eq. 8 contribute to the TDAF. For obtaining a tractable
solution, we propose at this stage the use of a pair
approximation for the electric fields. We thus neglect all
correlations of higher than second order, and assume the
correlations of second order to be small. It is then possible
to sum all the terms, and the result for the element
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av

T  may be written as:
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2exp
is ε   , ... (13)

where we have used the square of the reduced matrix

element D2
0 =

2
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If we proceed similarly for { }210 210
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obtain:
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By combining the terms { }211 211
av

T  and

{ }210 210 ,
av

T  and noting ∆ε = ε1 – ε2, we get the

final TDAF [8, 9]:
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We can express C (s) in terms of the time microfield
auto-correlation function (TMAF) CEE (τ). Performing
the integral over τ′, we obtain:

C (s) = (1/3)
2

21 10 exp
is

d
∆ε 

  




( )20

0

2 cos 2 1
s

EE
p

D
s E d C

s

 τ  + τ − τ  ω  
∫

... (16)

In this equation, the time is expressed in units of
the inverse of the electronic plasma frequency
ωp = (4πNee

2/me)
1/2. The quantity CEE (τ) contains in our

approach the dynamical effect of the microfield on the
emitters radiative properties.

Equation 16 gives the TDAF regardless of the nature
of charged particles. We can apply it according to our
interests, either to ions or to electrons. In the following
we limit our attention to derive the TDAF for ions in
different regimes.

3. IMPACT AND STATIC APPROXIMATION
 FOR IONIC PERTURBERS

3.1 Impact Approximation

The impact approximation is valid when the mean
duration of a collision τc is much smaller than the interval
∆s between two successive collisions. The duration ∆s
is of the order of the inverse of the collisional line width
expressed in angular frequency units. This criterion is
equivalent to say that the average collision is weak, i.e.
the product of the interaction by the collision time must
be small compared to  ; this ensures that the collisions
can be treated by perturbation theory and do not produce
a large perturbation on the emitter. The argument of the
cosine in Eq. 16 represents a cumulated phase change of
the radiation between time 0 and s. If we are looking for
conditions where the impact approximation is valid, we
may thus assume that this phase change is small, and
expand the cosine up to the second order term. Noting

that ( ) ( )22 cos 3 1 / 6X X+ ≅ −  we can write Eq. 16 as:

C (s) =
2

21 10 exp
is

d
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2

20
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s
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p

D
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   τ  − τ − τ    ω   
∫

... (17)

Since the mean duration of a collision is very small
compared to the time between two successive collisions
we extend the boundary of the integral in the last equation
from (0, s) to (0, ∞):

( ) ( )
0 0

1

s

EE EEd C d C
s

∞

τ τ − τ → τ τ  ∫ ∫ ... (18)
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Using an impact operator Φi for the ions, the TDAF
may be written:

C (s) = [ ]
2

21 10 exp exp i

is
d s

∆ε  φ  


 ... (19)

Comparing with Eq. 17, we obtain for our model an
impact operator in the weak collision limit:

φi = ( )
2

201

3 EE
p

D
E d C

∞

0

 
− τ τ ω  ∫

... (20)

This expression is similar to those of impact operators
for hydrogen emitters found in the literature [1], when a
second order approximation in the interaction potential
is assumed.

3.2 Static Approximation

In the static case, the microfield is considered to be slowly

varying in time, so that ( ) ( )0E Eτ ≅
 

. The TMAF may

then be taken constant ( ) ( )0 1,EE EEC Cτ = =  allowing
to write for the TDAF in the static limit as:

C (s) = (1/3)
2

21 10 exp
i

d s
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202 cos
p

D s
E

 
+ ω   ... (21)

We can compare this expression to previously
published calculations for the Lyman alpha line in the
static case [10]. In that limit, our TDAF C (s) for an
average field has the same structure as the previous result
(see Eq. 3.2 of reference 10).

4. THE ION DYNAMICS REGIME

For hydrogen line with low principal quantum number,
ion dynamics may affect the line shape for the densities
found in laboratory plasmas, and in the edge of magnetic
fusion devices. Such conditions usually correspond to
weakly coupled plasmas. To study the dynamic
properties, we use for the ions a theoretical expression
for the time microfield autocorrelation function (TMAF)
which is derived from the work of Rosenbluth and
Rostoker in weakly coupled plasmas [11]:

CEE (τ) = 03 1

D

r

λ τπ

( ) ( )

2 2

2

3
1

2 ,

exp erfc

  + τ − π τ τ +    
 − τ τ 

... (22)

where τ is the time expressed in units of the plasma
frequency, and λD the electronic Debye length. To obtain
the line shape, we must first insert this expression for
CEE (τ) in the TDAF. The line shape in the atom's rest
frame at a frequency ω is given by the Fourier transform
of the TDAF:

I (ω) = ( ) ( )1
expRe ds C s i s

∞

0

ω
π ∫ ... (23)

We now compare our approach to an ab initio
technique which consists in a numerical simulation of
the motion of a large number of charged particles,
followed a numerical solution of the Schrödinger
equation for the emitter evolution operator. This
procedure is repeated a large number of times in order to
perform a statistical average. Such computer simulations
have been used many times by several groups in the last
three decades, allowing to establish benchmark profiles
for a comparison to models and experiments [12, 13, 14,
15]. For the weakly coupled plasma conditions studied
here, we simulate a set of ions moving on straight lines
in a cube with periodic boundary conditions [15]. On
Fig. 1 we present a first calculation of a line shape
obtained with our path integral model, compared to the
numerical simulation. For a density of Ne = 1015 cm– 3

and a temperature of 105 K, the profile obtained by our
model is broader by about 15% than the simulation
profile. This difference may be related to the approxi-
mation consisting in a factorization of the expressions
containing a large number of fields in a product of
averages containing only pair of fields. Note that for such
conditions a static ion approximation would predict a
line shape narrower by more than an order of magnitude.
We can conclude that our approach thus captures most
of the effect of ion dynamics.
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Fig. 1: Profile of lyman alpha for Ne = 1015 cm – 3, a temperature
of 105 K. Our path integral model (solid line)

is compared to a computer simulation (dashed line)

5. CONCLUSIONS

Using a path integral point of view, we derive an
expression for the Lyman alpha line shape retaining the
effect of ion dynamics. We show how it is possible to
recover the usual impact and static approximation for
the ionic component. Our main approximation is a
reduction to pair correlation functions of a cluster
expansion in the electric microfield. This allows to sum
all the terms appearing in the standard perturbative
solution for the path integral point of view, and to express
the TDAF in a compact expression involving the electric
field autocorrelation function. A fairly good agreement
between our model and a simulation calculation is found
for our first calculation, and is a motivation for further
developments with this approach. In particular, we would
like to use the ability of the path integral point of view
for the description of a full quantum emitter-perturber
interaction. Interesting applications of a full quantum
approach exist in high temperature plasmas such as found
in fusion devices, for a modelling of the emission of
multicharged emitters perturbed by electrons.
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