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ABSTRACT: Interaction of intense ultrashort (few-cycle) laser pulses with atoms and molecules leads to a highly
nonlinear nonperturbative regime of electron dynamics and response. Ionized electrons are shown to be controlled by
such pulses and the response is described by simple classical models of under and above barrier ionization followed by
recollision with the parent ion or collision with neighboring ions in molecules. Harmonic generation in such a
nonperturbative regime produces photons with maximum energy predicted by simple classical models of collision-
recollision for both linearly and circularly polarized pulses. This highly nonlinear generation of high energy photons is
currently the main source of attosecond pulses.

1. INTRODUCTION

Advances in current laser technology is providing new tools for experimentalists and challenges for theorists to
explore a new regime of light-matter interaction, the nonlinear nonperturbative interaction of atoms and molecules
with intense (I ≥ 10+14 W/cm2) few cycle laser pulses. Much of the earlier experimental and theoretical work in this
new nonperturbative regime of radiation-atom interaction has been summarized by Brabec, Krausz [1], Corkum,
Krausz [2]. Thus in the atomic case new nonperturbative optical phenomena have been found such as above threshold
ionization, ATI, [1], tunnelling ionization predicted as early as 1980 [3-5] and is the basis of re-collision physics [6]
which has been confirmed experimentally recently [7]. Another important nonlinear process, High-Order Harmonic
Generation, HHG, is the current most convenient source of attosecond (1asec = 10-18s) pulses [8]. This rapid
development of ultrashort intense laser pulses allows nowadays for shaping and focussing such pulses to higher
intensities creating electric fields E greater than the atomic unit, a.u, E

0 
= 5×109 V cm–1 at the 1s orbit radius

a
0 
= 0.0529 nm of the H atom. This corresponds to an a.u. of intensity I

0 
= 2

0 /8πcE  =3.54 × 1016 W/cm2. Such pulses

can be compressed to times of several femtoseconds (1 fs= 10-15s), thus creating radiative coherences that are
shorter than molecular nonradiative (radiationless) relaxation times [9,10]. We give in table 1 a brief “history” of
this evolution (revolution) and the new terminology associated with this evolution. In table 1 we also summarize
the atomic units, a.u., for various physical quantities and/or parameters used to describe the physical processes
occurring under the “extreme” conditions of these new pulses.

Whereas at the end of the 20th century the focus was on femtosecond (fs) photochemistry and photophysics
culminating with a Nobel prize to A. H. Zewail (Caltech) for “Femto Chemistry” [12] a major effort is now
underway to develop single attosecond (asec) optical pulses based on the nonperturbative physics of HHG in
atoms [8] and MHOHG, Molecular High Order Harmonic Generation in molecules [13]. These new asec pulses
presage the control of electron motion in molecules, the “Holy Grail” of many atomic and molecular sciences
[14-16].
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Table 1
Evolution of Laser Parameters

Times Intensity (Watts/cm2) Year

Nano 10-9 Giga 10+9 1980

Pico 10-12 Tera 10+12 1990

Femto 10-15 Peta 10+15 1995

1 a.u.: t
0
=24.2×10-18 I

o
=3.54×10+16

Atto 10-18 Exa 10+18 2001

Zepto 10-21 Zetta 10+21 2009

Yocto 10-24 Yotta 10+24 ?

The Schwinger limit, 10+29 W/cm2, is the limit of instability of matter by tunneling from the vacuum itself thus creating electron-positron
pairs [11].

Table 2
Atomic units (e = � = m

e 
= 1; c = 137.036)

Potential energy : V
0
 = e2/ a

0
 = 1 Hartree = 27.2 eV

Electric field : E
0
 = e / a2

0
 = 5.14 x 109 V cm-1

Intensity : I
0
 = cE

0
2/8π =3.54 x 1016 W/cm2

Distance : a
0
 = 0.0529 nm

Velocity : υ
0 
= 2.19 x 108 cm s-1

Time : t
0
 = a

0 
/ υ

o
 = 24.2 x 10-18s

t
c
 = �/m

e
c2 = 1.29 x 10-21s

The intensities discussed in the present article, 1014 ≤ I ≤ 1015 W/cm2 correspond to fields approaching the
internal Coulomb potentials V

0
 (table 2) in atoms and molecules, thus introducing considerable distortions of

intermolecular potentials. Using a dressed photon state representation, such strong radiatively induced distortions
create LIMP’S, Laser Induced Molecular Potentials, leading to “bond-softening” via laser-induced avoided crossings
of molecular potentials [17, 18]. At these high intensities, one needs to consider further ionization and Above-
Threshold Dissociation, ATD, the equivalence of ATI in atoms. Furthermore the quasistatic picture of atomic tunnelling
ionization [3-6] needs to be modified in view of the multi-centre nature of electron potentials in molecules and the
presence of large radiative transition moments, originally described by Mulliken [19] as Charge Resonance (CR)
transitions [17, 18]. One of the fundamental differences between intense field ionization of atoms and molecules is
“Enhanced Ionization” which occurs at critical internuclear distances R

c
 greater than equilibrium distances R

e
 for

molecules exposed to intense pulses [17,18]. Quasistatic models of enhanced ionization have been successful in
predicting values of R

c
 [20-23]. The main tenet of this model, which differs fundamentally from quasistatic atomic

ionization is that laser induced charge resonance (CR) effects localize temporarily the electron by charge transfer
due to the presence of large electronic transition moments in molecules resulting in adiabatic electronic charge
transfer across the whole length of a molecule [19].

The low frequency nonlinear nonperturbative regime of laser-matter interaction is characterized by highly
nonlinear multiphoton processes best described by quasistatic semiclassical models of simple tunnelling ionization
processes followed by Laser Induced Electron Re-collision, LIERC of the ionized electron with the parent ion [4,6].
It has been applied successfully to explain ATI and HHG in atoms [1], thus offering a nonlinear nonperturbative
theoretical framework based on quasistatic models. Molecules offer the possibility of the recolliding electron to
“diffract” from more than one nuclear center, leading to a phenomenon, laser-induced electron diffraction, LIED
[24], a tool for probing molecular geometry changes on ultrashort time scales. Coulomb explosion, ATI and MHOHG
provide other methods using re-collision to image molecules [25] even at the orbital level by “orbital tomography”
[26]. Thus laser induced electron re-collision LIERC, is a central process in intense field physics [6]. In atoms it has
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led to an efficient source of X-rays and extreme ultraviolet (UV) radiation and to asec optical pulses [2, 8, 16]. In
diatomic molecules it is allowing for asec time resolved electron – nuclear dynamics [27-29]. Less well appreciated
is the possibility of an electron colliding with a neighbouring ion to generate high order harmonics well beyond the
maximum energy in atoms of I

p
+3.17U

p
, where I

p
 is the ionization potential, U

p 
= I/4ω2 (in a.u.) is the electron

ponderomotive energy at laser intensity I and frequency ω [30-32]. Reflection by a laser-driven electron from a
neighbouring ion followed by recombination at a parent ion can also lead to harmonics by acquiring electron
ponderomotive energies up to 32 U

p
 [33, 34].

Clearly, atomic and molecular phenomena in ultrashort intense laser fields can be considered as an extension of
the principles of coherent control [35, 36] into the nonlinear nonperturbative regime of laser-matter interactions.
One of the fundamental concepts of intense field laser-atom interaction has been the rescattering or three-step
model [4, 6]. Thus following ionization, the electron remains controlled by the laser pulse, returning to the ion core
after a phase and sign change in the electric field of the laser pulse. Molecules exposed to intense laser fields add a
new perspective to the study of intense laser-matter interactions. The extra degrees of freedom from nuclear motion
allow for “entanglement” of the electron-nuclear dynamics thus complicating the laser control of molecular processes
at high intensities. Nevertheless, extension of the simple semi classical atomic re-collision model has led to elucidation
of molecular charge-resonance-enhanced ionization, CREI, which occurs in molecules at large internuclear distances.
The electron re-collision model has now been validated experimentally in molecules [37] and is becoming a new
tool for probing molecular dynamics on ultrashort time scales [24-27]. To date the model has been limited to linear
polarised pulses, thus controlling the ionized electron to move in linear trajectories. New research with ionization
by ultrashort intense circularly polarized pulses in molecules [38,39] is opening new theoretical questions and
generating new models where electron combination and recombination is again the main concept elucidating strong
field physics phenomena.

2. QUASISTATIC MODELS: ONE-ELECTRON SYSTEMS IN STRONG FIELDS

The first simple analytic formulae for atomic multiphoton ionization beyond usual perturbation (Fermi Golden
rule) theory was obtained by Keldysh [3] who showed that a parameter γ, today called the Keldysh parameter [40,
41] allows to separate the perturbative multiphoton regime from the nonperturbative quasistatic tunnelling regime.
This parameter is obtained from the low frequency limit of the transition probability from an initial bound state to
a Volkov state, the state of a free electron “dressed” by a laser field [40, 41]. This is essentially a time-dependent
Distorted Wave Born Approximation where the Coulomb potential is retained in the initial bound state and the laser
field only in the final continuum state. The Keldysh parameter is then defined by [40, 41]

1/ 2( / 2 )γ = p pI U (1)

where I
p
 is the ionization potential and U

p
 is the ponderomotive energy, U

p
 = I

0
 / 4ω2, the average kinetic energy of

a free electron in a linearly polarized field E(t) = E
0
 cos(ωt) and peak intensity 2

0 0 /8= πI cE  at frequency ω. The

ponderomotive energy U
p
 and ponderomotive radius α

p
 are in fact two additional important parameters in laser-

induced electronic processes. Solving the classical equations of motion in a monochromatic time dependent field
E(t) = E

0
 cos(ωt + φ) gives in a.u.,

0
0 cos( ), ( ) [sin( ) sin ]= − ω + φ = − ω + φ − φ

ω
�� �

E
z E t z t t , (2)

0
02

( ) [cos cos( ) sin ]= − φ − ω + φ − ω φ
ω
E

z t t t , (3)

where φ is the initial laser phase called the CEP (Carrier Envelope Phase) at which moment an electron is ionized at

time t = 0 assuming an initial zero velocity (0) 0=�z  as in the tunnelling model [4], from which one can estimate

initial ionization rates using a static E field rate [3, 4, 40]. Tunnelling ionization has now been detected in atoms
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from the modulation of the ionized electron density by the intense laser field [7]. These classical equations define
the ponderomotive radius α

p
 and ponderomotive energy U

p
 (in a.u.)

2 2 2 2
0 0

1
/ , / 4

4
α = ω = α ω = ωp p pE U E . (4)

The Keldysh parameter γ, equation (1) is a ratio of two energies: I
p
 the minimum energy to ionize the electron

and 2Up, the maximum kinetic energy, 
21

2
�z , acquired by a free electron in the laser field. This simple classical

quasistatic model described by equations (2-4) where one assumes an electron is ionized with initial zero velocity

(0) 0=�z , the basis of tunnelling ionization models [1, 4] allows us to deduce the laser induced dynamics of the
electron after ionization. Thus for λ = 1064 nm (ω = 0.043 a.u.) and intensity I

0
 = 1×1014 W/cm2 = 3×10–3a.u., one

obtains α
p 
= 29 a.u.=1.53nm. This maximum displacement α

p
 determines the minimum size of numerical grids and

U
p
 determines the corresponding spatio-temporal steps ∆x, ∆t (from uncertainty principle relations) in computations

at high intensities [42]. Equation (2) also allows to predict the maximum average kinetic energy to be 
21

( ) 3
2

〈 〉 =� pz t U

at CEP phase φ = π/2 (〈cos2 ωt〉 = 1/2, 〈cos ωt〉 = 0). Such high energies acquired during ionization was observed and
explained in microwave ATI using the simple model of equations (2-3) [43]. In practice ionization occurs at different
phases φ = ωt

0
, i.e, i.e., at time t

0
, the instant the electron is created in the field. As we show later, t

0
, determines the

electron trajectories for collision with neighbouring ions and recollision with the parent ion in both linear and

circularly polarized laser fields. Initial zero velocity, 0( ) 0=�z t will occur at the instant of tunnel ionization [4,6].

The quasistatic model allows further for establishing the critical or minimum field E
m 

where above-barrier
ionization occurs instead of under-barrier tunnelling ionization. This is illustrated in Fig. 1(a) for a one-electron
atom and Fig. 1(b) for a single valence electron in a diatomic molecule such as H

2
+, in the presence of a static

electric field E. In the atomic case, where a single “active” electron is bound by an effective nuclear charge q+, the
total potential along the field polarization, i.e., z-axis , can be written as V(z) = –q / | z | – Ez. As seen from Fig. 1(a),

the electric field distorts the atomic Coulomb potential thus producing a barrier with a maximum at 2/1)/( Eqzm =
obtained from ∂V / ∂z = 0. Setting V(z

m
) = –I

p
, where I

p
 is the ionization potential, one obtains the minimum field

2 / 4=m pE I q  for above-barrier ionization. For hydrogenic levels, 22 2/ nqI np =−= ε , for a level of principal

quantum number n. For such a level, the minimum electric field E
m
 for atomic above-barrier ionization is E

m
= q4/

(2n)4 a.u. or intensity 86 )2/( nqIm =  a.u. Thus for the n = 1 (1s) level of H, I
p 
= 1/2, I

m 
=1.4×1014 W/cm2. For the

Th+89 ion in its 2=n  level, I
m
 = 906/216a.u.= 2.84×1023 W/cm2. Such superintense fields are being currently considered

in the European ELI (Extreme Light Infrastructure) project [44]. The theoretical description of superintense field
electron ionization requires applying the relativistic Dirac equation to such processes and is becoming a new active
field of research [45-47].

Molecular above-barrier ionization leads to a new concept, CREI (Charge Resonance Enhanced Ionization) for
which recent experiments are summarized in [20]. As illustrated in Fig. 1(b), a molecular electronic potential is a
multicenter potential. Atomic energy levels are transformed into delocalized molecular orbitals, MO’s, which at
large internuclear distance R become linear combinations of atomic orbitals. In the case of H

2
+, the two most

important MO’s in low frequency multiphoton processes are the HOMO, highest occupied MO and LUMO, lowest
unoccupied MO, as these couple radiatively through an electronic transition moment <HOMU|z|LUMO>=R/2 [18,19].
In the presence of a static field, the LUMO is Stark-shifted in energy by +ER/2 whereas the HOMO’s energy is
lowered by –ER/2. Thus, at some critical internuclear distance R

c
 and critical field E

m
, the LUMO, which is populated

by the field, ionizes by ionization over the barrier between the two nuclei. This simple quasistatic model was first
proposed by Codling et al. [48,49] neglecting the Stark energies of both HOMO and LUMO, but rather emphasizing
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the localization (suppression of the tunnelling) between the field free wells, Fig. 1. Inclusion of the Stark energy
shift of the LUMO allows for estimates of R

c
 and E

m
 for above-barrier ionization in symmetric diatomic molecules

[22, 50]. Inclusion of static dipole moments such as in HeH++ further generalizes the concept of CREI in nonsymmetric
molecules [51].

We follow the original 1-D model of one-electron molecular ionization in A
2
2q+ systems where q+ is the charge

on each nucleus [22, 50]. Exact Born-Oppenheimer (static nuclei) time-dependent Schrödinger, TDSE simulations
of highly charged diatomic molecular ions exhibit ionization maxima for internuclear distances 6 ≤ R ≤ 10 a.u. at
“critical” distances R

c
 for laser polarization parallel to the internuclear axis. Ionization from MO’s with densities

perpendicular to the intermolecular axis also induces abrupt increase of ionization into atomic plateaus at R
c
 ~ 6 a.u.

[51]. The necessary conditions for CREI to occur at R
c
 is that the upper Stark shifted electronic eigenstate energy

ε
+
(R) exceeds the two potential barriers in Fig. 1(b), i.e.

)()()( ccincout RRVRV +≤≤ ε , (5)

where V
in
 and V

out
 are the inner and outer barriers of field modified the two-center Coulomb potential at the critical

field strength E
m
,

( , )
| | | |

2 2

−= − +
+ −

m

q q
V z R E z

R R
z z , (6)

and

( ) / / 2+ε = − − +p mR qI q R E R . (7)

E
m
R/2 is the energy Stark shift of the LUMO [Fig. 1(b)], I

p
 is the ionization potential of the neutral atom. Ionization

potentials of electrons from the same shell are assumed to scale as I(ion) = qI
p
 for an ion of charge q-1. The potential

(7) has maxima at z
in
 and z

out
 for E

m 
< 0 as in Fig. 1(b) which are given by

1/ 2 3/ 2 , / 32−= + =out q in qz R E z E R , (8)

where E
q
 = |E

m
| / q.

Solution of the CREI conditions [equation (5)] by setting ( ) ( ) ( )+ε = =c out c in cR V R V R  gives [21, 50],

Figure 1: Above Barrier Ionization in (a) Atoms and (b) Molecules
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pc IR /07.4= , 2139.0|| pm IE = . (9)

Neglecting the Stark-shift of the LUMO gives the value of R
c
=3/I

p
 and defines the onset of electron localization

due to negligible electron tunnelling between the potential double wells in the unperturbed field free molecule [21,
22, 48, 49]. Equation (8) shows the importance of the static field E

m
 in Stark-shifting the LUMO energy to ε

+
(R)

above the field modified barriers illustrated in Fig. 1(b). Nevertheless the end result is the surprising independence
of R

c
 from field strengths E

m 
and nuclear charge q+, thus establishing CREI as a universal intense field nonperturbative

phenomenon [20, 51-54].

Nonsymmetric molecules such as the one-electron HeH++ [51, 55, 56] present a different nonlinear nonperturbative
response due to the presence of a permanent dipole moment. This is illustrated in Fig. 2(a), for E

m 
> 0 and Fig. 2(b)

for E
m 

< 0. Thus the HOMO is displaced upwards to ε
+
(R) by |E

m
| R/2 for E

m
>0 and becomes resonant (degenerate)

with the LUMO, ε
_
(R) which is shifted downwards. Thus enhanced ionization can occur by resonance between

these two levels. In the case of the opposite field, E
m
<0, Fig. 2(b), both HOMO and LUMO can never cross, thus

suppressing the resonance and enhanced ionization. Using the similar static Stark-displaced potential model as in
the symmetric diatomic case above, one readily obtains the critical distance R

c
 for enhanced ionization in

nonsymmetric systems [53] to occur for E
m
 > 0 at,

1/ 2
1 2 1 2 1 2( ) [( ) 4 | | ( )]

2 | |

− + − − −= m
c

m

I I I I E Z Z
R

E (10)

I
1
 and I

2
 are the ionization potentials of the different heteroatoms with I

1
 > I

2
 and effective nuclear charges Z

1
,

Z
2
. Numerical TDSE simulations for HeH++ where Z

1
 = 2 and Z

1
 = 1 show for this nonsymmetric system dependence

of R
c
 on the CEP phase of the field strength E

m
 and charge separation Z

1
-Z

2
 as predicted by equation (10) [55].

Figure 2: Enhanced Ionization in HeH++ by Stark-shifted Orbital εεεεε+
, εεεεε-

3. LASER INDUCED ELECTRON RECOLLISION – LIERC

In the previous section we have demonstrated that ionization at low frequencies ω and high intensities I can be
considered as tunnelling ionization below the Stark induced Coulomb barriers and as above-barrier ionization as
illustrated in Figs. 1-2. Subsequent to such ionization, ionized electrons are controlled by the laser field as the
Coulomb potentials become less and less relevant. Therefore at high intensities I and low frequencies ω, the freed
electron in laser fields can be treated by classical physics, leading thus to early predictions of large electron energies
between 2 and 3 U

p
 in the microwave region [43] and in ATI spectra [5], the latter in agreement with early perturbative
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quantum mechanical pictures [57]. Consideration of the phase φ of the electric field and its effect on ionized
electron motion led to an early model of LIERC of electrons with surfaces plasmas as an efficient mechanism of
energy absorption [58]. High Order Harmonic Generation, HHG in atoms showed emission of high energy photons
with an energy maximum or cut-off at E

max
= I

p
+3.17U

p
 without a corresponding ATI energy cut-off [59, 60]. Classical

models of a recolliding electron with the parent ion [4, 60] after tunnelling ionization confirmed this experimental
cut-off law [61]. A subsequent quantum-mechanical treatment [62] assuming direct transfer from an initial bound
state to laser-dressed electron continuum states reproduced this universal cut-off law. As indicated in the previous
sections, electron ionization by low frequency intense fields in molecules leads to the possibility of electron
localization on one nucleus with subsequent collision with a neighbouring nucleus [30-34]. Numerical simulations
and models show that in the molecular case, cut-offs, i.e., maximum energy in molecular high order harmonic
generation, MHOHG exceed considerably the atomic I

p 
+ 3.17U

p
 energy maximum [13] and that these new high

energy cut-offs can be used to measure interatomic distances [63]. In the present section we derive general classical
equations of motion of Laser Induced Electron Recollision, LIERC, with parent ions and collision with neighbouring
ions thus addressing the role of various mechanisms in the control of MHOHG: re-collision, Coulomb focusing,
initial electron velocity and the validity of simple quasistatic models [64]. In particular we will compare ionization
and recombination with intense linear and circular polarization laser pulses.

(a) Linear Polarization

The classical equation of motion of an electron in a linearly polarized laser field E(t) at frequency ω, with arbitrary
initial velocity υ

0
 at initial time t

0
 (in a.u.) are:

0 0 0 0 0( ) cos( ), ( ) , ( )= − ω = υ =�� �z t E t z t z t z (11)

Its general solution, at a final time t
f
 (starting at the initial time t

0
), is

0 0( ) sin sin= υ = υ + φ − φ� f f fz t X X , (12)

0 0
0 0 0

sin
( ) ( ) [cos cos ]

υ + φ= φ − φ + φ − φ +
ω ωf f f

X X
z t z , (13)

where X = E
0
/ω, φ

0
 = ωt

0
, and φ

f
 = ωt

f
. X/ω is the displacement (or the amplitude α

p
 (equation 11) of the electron’s

oscillatory motion in the electric field), and φ
0
 and φ

f
 are the laser phases at initial t = t

0
 and final t = t

f
, respectively.

From equations (11) and (12) the final velocity υ
f
 reaches its maximal value υ

f
max = υ

0
 + 2X at the initial phase

φ
0
 = π/2 and at the final phase φ

f
 = (2n + 1)π/2. If the initial velocity υ

0 
= 0 the maximum attainable electron kinetic

energy is υ
f
2 = 2X2 = 8U

p
 where U

p 
=

 
X2/4 (in a.u.) is the ponderomotive energy. This maximum energy is reached

only at positions z
f
 obtained from equation (3):

0
0 2

| ( ) | (2 1)− = − π
ωf

E
z t z n , n = 1, 2, 3,··· , (14)

which is always non-zero. The maximum energy 8U
p
 therefore can only be reached at positions different from the

electron’s departure point z
0
, as already derived earlier in [30-32]. It should be noted that the maximum 8U

p
 energy

cannot occur when a one-colour laser is used and the electron is ionized via tunnelling since the electric field at the
initial phase φ

0
 = π/2 is zero and the tunnelling probability is zero as well. Such high kinetic energies can show up

only in two-colour schemes and in molecules in which the ionization can occur at one nucleus and the ionizing
electrons collides with the neighbouring ions [30,32]. Alternatively, a chirped linearly polarized laser pulse in
combination with a static field results in maximum energy HHG with I

p 
+ 42U

p
 [65].

It was shown earlier [4, 64] that, if the electron’s initial velocity υ
0
 is zero then the maximum energy that the

electron can acquire at the return to its departure point z
0
 (that is when z(t

f
) = z

0
) is E

f
 = υ

f
2/2 = 3.17314 U

p
. We show

below that this result is also valid for the nonzero initial velocity υ
0
; that is, we show that allowing a non-zero initial
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velocity υ
0
 does not lead to a higher return energy of the electron to its departure point z = z

0
. In other words, the

electron return energy is always less than 3.17314 U
p
 for any non-zero υ

0
. This general result is rather surprising

since one might believe that a non-zero υ
0
 may lead to higher return energies.

We impose next in equation (13) the condition of the electron return to its departure point z
0
; that is, we impose

z(t
f
) = z

0
. In general, z

0
 is very close to the parent ion placed at z = 0. In the original derivation of the HOHG cut-off

formula, one assumes that z(t
f
) = z

0 
= 0. Thus, using equation (3) one can express υ

0 
as a function of φ

0
 and φ

f
, or as

function of φ
0
 and ∆ = φ

f
 - φ

0
, which is the relative phase between the final and initial times t

f
 and t

0
:

0
1 0 2 0cos sin

υ = β φ + β φ
X

, (15)

where

1 2

1 cos sin
, 1

− ∆ ∆β = β = −
∆ ∆

. (16)

Inserting equation (15) into equation (12), we obtain the following expression for the electron’s final velocity
v

f
 at the return time t

f
 to z = z

0
:

0 1 0 2 0( , ) cos sin
υ

= ∆ φ = α φ + α φf f
X

, (17)

where

α
1
 = β

1
 – sin∆,  α

2
 = β

2
 + 1 – cos∆. (18)

The extrema of f (φ
0
, ∆) which lead to the two equations determining the coordinates of these extrema are:

1 2
0 0cos sin 0

α α∂ = φ + φ =
∂∆ ∆ ∆

d df

d d
, (19)

1 0 2 0
0

sin cos 0
∂ = −α φ + α φ =
∂φ

f
. (20)

Solving from equation (9) φ
0
 as a function of the phase difference ∆, one obtains from equation (20) the following

equation determining the phase delay ∆ value corresponding to the extrema of the velocity υ
f
 = Xf(φ

0
,
 
∆):

F(∆) = 2 – 2∆ sin ∆ + cos∆ (∆2 – 2) = 0. (21)

The function F(∆), has zeros at the ∆
k
 (k = 1, 2, 3, ...) reported in table 3. We also give there the corresponding

values of φ
0
 (calculated from equation (20), which yields φ

0 
= arctan[α

2
 (∆

k
)/α

1
(∆

k
)]), as well as the values of final

velocities υ
f 
(at the electron return to its departure point z = z

0
) obtained from equation (17), and the corresponding

electron energy E
f
 = υ

f
2/2. The first zero of the function F(∆), k = 1, corresponds the maximum value of the final

velocity υ
f
 = 1.259 590 5X, that is to the kinetic energy at the electron return; υ

f
2 / 2 = 3.173 37Up. The subsequent

four extrema (shown in table 1) correspond to lower energies. Results for k = 1, 3, 5 have been given previously in
[66] with υ

0 
= 0 imposed. This was attributed to the first return, second return and third return of the electron to the

departure point z
0
. k = 2 corresponds to a minimum. Next extremal values of υ

f
 can be directly estimated from

equation (17) by noting that for large phase ∆ the final velocity simplifies to

0 0( , ) sin( ) sin( ), 1.
υ

= φ ∆ ≈ − ∆ + φ = − φ ∆ >>f
ff

X
(22)

Thus for large phase delays ∆>>1 the final velocity at the electron return to z = z
0
 is limited by | υ

f 
|< X and

consequently the final kinetic energy at the electron return E
f
 = υ

f
2/2 never exceeds 2U

p
 at large ∆ values. Thus we
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have proved that the electron final velocity | υ
f 
| never exceeds υ

max
 = 1.259 590 5X, leading to the maximal energy

at the electron return to its departure point E
f
 = 3.173 137 U

p
, even when one allows for non-zero initial velocity υ

0
.

We show next that for all extrema of υ
f
 shown in table 1 the initial velocity is zero. Firstly, we find from equation

(20) that tan(φ
0
) = α

1
/α

2
. Inserting this result into equation (19) one obtains

0 02
0 1 2 2

1 1

cos
cos ( ) ( )

υ φα= φ β + β = ∆
α α ∆

F
X . (23)

Since υ
0
 is now proportional to F (∆), therefore we conclude from equation (21) that at any extremum of

the function f(∆, φ
0
) the initial velocity υ

0
 is zero. Clearly the highest energies at the electron return occur when

υ
0
 = 0.

Table 3
Coordinates ∆∆∆∆∆k

 and φφφφφ0, k
, for k = 1, ···, 5 of the Extrema of the Function

υυυυυf 
/ X  = f(φφφφφ0

, ∆∆∆∆∆) (equation (17)).

k 1 2 3 4 5

∆
k
/π 1.3005 2.426 5 3.43 5 4.458 5.461

∆
0
/π 0.0997607 0.0367498 0.032395 0.02079 0.019342 5

φ
f
/π 1.40024 2.463 2 3.467 4 4.478 8 5.480 34

υ
f
/X 1.259 59 0.878 15 1.096 4 0.931 13 1.059 7

E
f
/U

p
3.173 14 1.542 3 2.404 3 1.734 2.246

When using UV (or extreme ultraviolet) pulses superposed on femtosecond IR laser pulses, as in attosecond
control of MHOHG [67], the electron escapes to the continuum driven by a femtosecond IR laser electric field, with
non-zero initial velocity υ

0
 due to the absorption of a UV photon. Since harmonics are also generated by the

returning electron in theses case, we derive next the corresponding maximal initial velocity, still requiring the
electron to return to its departure point. We obtain extrema of the function υ

0 
/ X = h (∆, φ

0
), equation (23) by

imposing the conditions as for υ
f 
/ X, equation (17),

1 2
0 0cos sin 0

β β∂ = φ + φ =
∂∆ ∆ ∆

d dh

d d
, (24)

1 0 2 0
0

sin cos 0
∂ = −β φ + β φ =
∂φ

h
. (25)

where β
1
 and β

2
 are defined in equation (16). These conditions lead again to F (∆) = 0 as equation (21). The extrema

of the function h (∆, φ
0
) occur at the same values of ∆ = ∆

k
 as in the case of the final velocity υ

f
 function equation

(22), but at different phase φ
0
 and φ

k
 values, which can be calculated from equation (25):

2
0

1

( )
arctan

( )

 β ∆φ =  β ∆ 
. (26)

We list in table 4 the value of values of φ
0
, φ

0
 and υ

0
 corresponding to each ∆

k
.

For large ∆, equation (15) simplifies to υ
0 
/ X  ≈ sin(φ

0
) which means that | υ

0 
/ X | < 1. This result and table 4 lead

us to the conclusion that

0
0 max

1

| | 1.25959 1.25959υ < υ = =
ω
E

X . (27)
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Table 4
Coordinates ∆∆∆∆∆k

 and φφφφφ0, k
, for k = 1,...,5 of the Extrema of the Function υυυυυ0 

/ X = h(φφφφφ0
, ∆∆∆∆∆) (equation (23))

k 1 2 3 4 5

∆
k 
/ π 1.300 48 2.426 5 3.435 4.458 5.461

φ
0 
/ π -0.400 24 -0.463 25 -0.467 6 -0.478 8 -0.480 3

φ
f 
/ π 0.900 24 1.963 2 2.967 4 3.979 2 4.980 7

υ
0
/X 1.259 59 0.878 15 1.096 4 0.931 28 1.059 9

In conclusion, if one initializes the classical trajectory with the initial velocity υ
0
 exceeding υ

max
 the electron

will never return to its starting point z = z
0
 (this is true for all possible initial phases φ

0
) and, consequently, no

harmonic generation occurs for high initial velocities |υ
0
|. υ

max
 coincides with the maximum return velocity found

originally by Corkum [2] and derived here from equations (19) and (20). Figure 3 confirms what we have shown
analytically, namely that a non-zero υ

0
 always lowers the electron energy at its return. In experiments using a 800

nm laser pulse and an asec UV laser pulse, usually a non-zero initial velocity υ
0
 will appear for sufficiently high UV

frequency [67]. Thus, if one wishes to use an asec pulse to control harmonic generation, one should not introduce
initial velocities higher than 0.8 X = 0.8 E

0 
/ ω, since otherwise the electron energy at its return is less than 2.5 U

p
,

(see Fig. 3). However, a smaller υ
0
 can be useful for the control of harmonic generation without decreasing

substantially the cut-off energy, as seen from Fig. 3. φ
0
 can be controlled via the time delay between fs and asec

pulses.

We deduce from Fig. 3 that by varying the initial phase φ
0
 within an interval -0.4 π < φ

0 
< 0.4π, and simultaneously

maintaining υ
0
 within the range -0.6 X < υ

0 
< X, we will obtain energetic electrons, with E

f
 > 2.2 U

p
, within the phase

range 1.25 p < φ
f
 < 1.5 π whereas, if one uses a single laser pulse, high harmonics are generated, at a fixed value φ

f

= 1.4 π. Thus, by varying the delay between an asec and intense IR pulses, we modify the phase at which high
harmonic generation (or generation of a new asec pulse) occurs with respect to the phase of an IR pulse. Figure 3
clarifies this new possibility for control; by choosing a specific value of υ

0
. Fast electrons return to z = z

0
 only when

initialized within a narrow interval of φ
0
. For υ

0
 = 0 this interval is 0.04 π < φ

0
 < 0.18, whereas for υ

0
 = 0.4 X the

interval is -0.09 π < φ
0
 < 0.02 π, as seen in Fig. 3. Clearly, by allowing for a non-zero initial velocity υ

0
 we can create

possibilities for MOHG in a much broader interval of initial phases than in standard tunnelling models, in which the
initial velocity υ

0
 = 0 restricts classical trajectories to a very narrow initial φ

0
 interval.

Figure 3: Electron Return Energy (in U
p
) as a Function of the Initial Phase φφφφφ0

 Calculated at Fix υυυυυ0
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We now illustrate by quantum computation the effect of recollision dynamics on the HHG spectrum of a single-
active electron, SAE, model He with a linearly polarized field E(t) along the z-axis. We add the linearly polarized
laser-electron radiative interaction V

E
(r, t) = r cos θ E(t) to the He SAE effective potential [64]:

1 1
( ) exp( )

2
 = − − + −  c

k
V r kr

r r
(28)

where k = 17/8. The numerical solutions of the TDSE yield an ionization potential I
p
 of the ground state of this

potential to be 24.0 eV as compared to the experimental value 24.6 eV. We use two pulses E
j
(t), j=1,2, each defined

by vector potentials A
j
(t):

( )1
( )

∂
= −

∂
j

j

A t
E t

c t
, ( ) ( )sin[ ( )]= − ε ω −j j j jA t c t t t (29)

with envelope ε
j
(t)

2
0,

( ) / 2
( ) cos

 π −
ε =  τ  

j
j j

j

t t
t E , (30)

corresponding to a full width at half-maximum ∆t
j
 = 0.364τ

j
. The definition of E

j
(t) by equations (30-31) ensures the

total area ∫
∞

∞−
= 0)( dttE j  as required from Maxwell’s equations [1].

Figure 4: Harmonic Generation Spectrum for a Helium Atom for Various Phase ΦΦΦΦΦ0
 = ωτωτωτωτωτ

d
 Delays between asec and IR Pulses.

The Intensity of each Pulse is I = 1014 W/cm2 and the Pulse Durations are 10 and 0.6 fs. The Cut off Occurs at
I

p 
+ 3.17U

p 
= 29ωωωωω (ωωωωω = 0.057 a.u., λ λ λ λ λ = 800 nm)

Using ∆t
1
 =10fs for the IR (λ = 800 nm, ω = 0.057 a.u.), and ∆t

2
 = 0.6 fs for the asec UV pulse (λ = 115 nm, ω

= 0.466 a.u.), the HHG spectrum of the SAE model He was calculated from the FT (Fourier Transform) of the
electron acceleration for the linear laser polarization (z-axis)
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( ) ( ) | / ( ) | ( ) , ( ) exp( ) ( )= 〈ψ −∂ ∂ − ψ 〉 ω = − ω∫Fa t t V z E t t a i t a t dt (31)

described in [13]. The spectrum is illustrated in Fig. 4 as the square of the dipole spectrum 2 2 2| ( ) | | ( ) / |ω = ω ωF Fd a

for a series of time delays τ
d
 = t

2
– t

1
 with the corresponding phase delays φ

0 
= ω

1 
τ

d
 of the IR pulse E

1
(t) with respect

to the peak of the asec pulse E
2
(t). The two-colour laser field, equation (29) corresponds to the combination of each

pulse with same intensity I = 1014 W/cm2. Furthermore the spectrum significantly depends on the phase delay
φ

0
 between both pulses. A variation of harmonic intensities by nearly one order of magnitude as a function of φ

0
 is

evident reflecting the different ionization probabilities [68, 69]. Both effects of similar magnitude were already
observed in H

2
+ [67], for which the most effective phase delay was φ

0
 = 0.2π due to the stronger Coulomb potential.

Fig. 4 shows that in the atomic He case the strongest HHG occurs at φ
0
 = 0 at the maxima of the IR field E

1
(t). At

intensity I = 1014W/cm2, λ = 800nm (ω = 0.057a.u.), U
p
 = I / 4ω2 = 4.2ω and I

p 
= 24.6eV=16ω, thus defining a cut-

off at I
p 
+ 3.17U

p
= 29ω, in agreement with Fig. 4 where for harmonic order N  > 30, the HHG spectrum decreases

rapidly. Fig. 4 shows therefore that prior ionization of a bound electron, thus giving it nonzero initial velocity υ
0

generates harmonics with maximum energy at I
p 
+ 3.17U

p
, the universal cut-off law in HHG from atoms by recollision.

(b) Circularly Polarized Pulses

Atomic HHG by recollision of electrons with circularly polarized pulses is considered impossible since the ionized
electron acquires very high angular momentum in the continuum. As the harmonic emission is by a single photon
involving a single momentum change from the continuum back to the initial ground state, such a process is highly
forbidden. Under special conditions an ionized electron in a circularly polarized field can also collide with inner
electrons [39]. In molecular systems, as shown in equation (14), collision of an electron with a neighbouring atom
in an intense linearly polarized pulse parallel to the internuclear axis will generate harmonics with maximum
energy 8U

p
 at internuclear distances R = (2n + 1) πE

0
 / ω2 (n = 0, 1, ...) [30-32, 63, 70-72]. The resulting very high

energy linearly polarized harmonics in general can be generated in a pre-dissociated molecular gas for asec pulse
generation [73]. Atomic circularly polarized HHG by two colour (bichromatic) co-planar circularly polarized
counterrotating in the same plane was shown to be possible provided the electron trajectories responsible for the
emission have a nonzero initial velocity υ

0
. The strongest contribution to the harmonic emission rates comes from

those orbits with short travel and return times of 1/3 of a cycle [74] as compared to 2/3 of a cycle for linear
polarization [65]. Recent measurements of MHOHG polarization of diatomics in linearly polarized laser fields
shows that harmonics are in fact strongly elliptically polarized [75]. Such elliptically polarized MHOHG spectra
occur also in extended (large R) H

2
+ simulations with bichromatic ultrashort intense circularly polarized laser pulses

[38].

In linearly polarized recollision with parent ions, maximum harmonic energies are given from the initial zero
velocity ionization model by I

p
 + 3.17 U

p
 [1, 4], and section 2a, whereas collision with neighboring ions gives

harmonic energies up to I
p
 + 8U

p
 [30, 31, 63, 64]. For circularly polarized laser pulses of maximum amplitude E

0
,

corresponding to intensity 2
0 0 /8= πI cE  and frequency ω and carrier envelope phase (CEP) φ,

0 0( ) cos( ), ( ) sin( )= ω + φ = ω + φx yE t E t E t E t , (32)

the classical field equations of motion [ ( ) ( ), ( ) ( ),= − = −�� ��x yx t E t y t E t ] give the laser induced velocities

0( ) [sin( ) sin ]= − ω + φ − φ
ω

�
E

x t t , 0( ) [cos cos( )]= − φ − ω + φ
ω

�
E

y t t . (33)

For initial velocity conditions (0) (0) 0= =� �x y  the corresponding displacements are,

0 0
2 2

( ) [cos cos( ) sin ], ( ) [ cos sin sin( )]= − φ − ω + φ − ω φ = − ω φ + φ − ω + φ
ω ω
E E

x t t t y t t t . (34)
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The total time dependent energy is from equation (33)

2
2 2 01

( ) [ ( ) ( )] (1 cos )
2

 = + = − ω ω 
� �e

E
K t x t y t t , (35)

with maximum value 8U
p
 at (2 1)ω = + πct n , n = 0, 1, 2, ...,  where t

c
 is collision time, and ponderomotive energy

2 2
0 / 4= ωpU E . The corresponding maximum electron displacement (transfer) to a neighboring ion is from equation

(35)

2 2 2 20
2

2 1
( ) ( ) 1 ( )

2
= + = + + π

ωn c c

E
R x t y t n , (36)

for integer n, and is independent of the CEP, φ. For diatomic molecules aligned with the x-axis, this reduces to

2 20
2

2 1
( ) 1 ( ) cos ,   ( ) 0,

2
 = = − + + π φ = ω  c n c

E
x t R n y t (37)

where 
1

tan
2

 φ = − + π  
n  for collision time t

c
.

With a two-color circularly polarized laser field

0 1 2 0 1 2( ) [cos( ) cos(2 )], ( ) [sin( ) sin(2 )],= ω + φ + ω + φ = ω + φ + ω + φx yE t E t t E t E t t (38)

the CEPs, φ
1
 and φ

2
 determine the optimal values of the kinetic energy K

e
(t) and electron distance R(t) for MHOHG.

The corresponding laser induced velocities are,

0
1 1 2( ) [sin( ) sin cos( )sin ],= − ω + φ − φ + ω + φ ω

ω
�

E
x t t t t (39a)

0
1 1 2( ) [cos cos( ) sin( )sin ],= − φ − ω + φ + ω + φ ω

ω
�

E
y t t t t (39b)

and the corresponding displacements

0
1 1 1 2 2 22

( ) [4cos 4 sin 4cos( ) cos(2 ) cos 2 sin ],
4

= − φ − ω φ − ω + φ − ω + φ + φ − ω φ
ω
E

x t t t t t (40a)

0
1 1 1 2 2 22

( ) [4sin 4 cos 4sin( ) sin(2 ) sin 2 cos ].
4

= − φ + ω φ − ω + φ − ω + φ + φ + ω φ
ω
E

y t t t t t (40b)

(Maximizing the total kinetic energy K
e
(t) with respect to the CEPs φ

1
 and φ

2
 gives the net optimal CEP condition φ

= φ
1
 – φ

2
 = nπ + ωt / 2. Inserting this condition into K

e
(t) in equation (35) and maximizing the resulting

K
e
(t) with respect to ω

0
t
c
 gives the result for n = 0, ωt

c
 = 2π / 3,  φ = φ

1
 – φ

2
 = π / 3 whereas for n = 1, ωt

c
 = 4π / 3,

φ = –π / 3 [38].

For n = 0, the choice of phases ωt
c
 = 2π / 3, φ = φ

1
 – φ

2
 = π / 3 gives respectively the following components of

)( ce tK , where 22
0 4/ ωEU p = ,
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2

2 20
2 2

1 9
( ) ( ) ( 3 cos 3sin ) ,

2 32
 = = φ + φ ω 

�ex c c

E
K t x t (41a)

2

2 20
2 2

1 9
( ) ( ) ( 3 cos 3sin ) ,

2 32
 = = φ − φ ω 

�ey c c

E
K t y t (41b)

2 21
( ) ( ) ( ) [ ( ) ( )] 13.5 .

2
= + = + =� �e c ex c ey c c c pK t K t K t x t y t U (41c)

The second choice for n = 1, ωt
c
 = 4p/3,  φ = –π/3 corresponds to replacing φ

2
 by –φ

1
 in equation (41). Equation

(42) shows that the total kinetic energy K
e
(t

c
) is independent of φ

2
 for both optimal CEPs φ = ± π / 3.

Figure 5: Displacements x(t
c
) and y(t

c
), Equation (41) for the Cases (a) n = 0, ωωωωωt

c
 = 2πππππ/3 and (b) n = 1, ωωωωωt

c
 = 4πππππ / 3 as a

Function of φφφφφ2
. The CEPs φ φ φ φ φ = φφφφφ1

 – φφφφφ2
 = π π π π π / 3 and φ φ φ φ φ = –π π π π π / 3 give the maximum collision energy K

e 
= 13.5U

p
 with a

Bichromatic Circularly Polarized Laser Pulse at I
0
 = 2 × 1014 Wcm–2 (E

0 
= 0.0755 a.u.), λλλλλ1 

= 400 nm
(ω ω ω ω ω = 0.114 a.u.), and λλλλλ1

 = 200 nm (2ω ω ω ω ω = 0.228 a.u.)

As examples we consider intensity I
0
 = 2×1014 Wcm-2 (E

0
 = 0.0755 a.u.) and λ = 400nm (ω = 0.114). The

electron displacements (transfer distances) x(t
c
) and y(t

c
) for ωt

c
 = 2π/3, φ = π/3 (n = 0) and ωt

c
 = 4π/3, φ = –π/3 (n

= 1) are shown in Figs. 5(a) and 5(b), respectively. With 3/2πω =ct  for example, for phases φ
1
 = π/3 and φ

2
 = 0,

the electron displacements are 35.0)( −=ctx  a.u. and 5.18)( −=cty  a.u. and for φ
1
 = 0 and φ

2
 = –π / 3,

2.16)( −=ctx  a.u. and 9.8)( −=cty  a.u. from equation (40). Maximum efficiency of the MHOHG process is

obtained for the smallest x(t
c
) or y(t

c
) which corresponds to near direct (head on) collision with a neighboring

nucleus. Thus at λ = 800nm (ω = 0.057a.u.), the corresponding electron displacements are respectively 4.1)( −=ctx

a.u., 74)( −=cty  a.u. and 6.64)( −=ctx a.u., 7.35)( −=cty  a.u.. We conclude hence that short wavelengths

(e.g., λ = 400 nm) and phases 3/1 πφ = , 02 =φ  give the best collision conditions with neighboring ions thus
increasing MHOHG efficiencies.

As a molecular example we consider the H
2
+ molecular ion at a fixed internuclear separation R (Born-Oppenheimer

approximation), interacting with the bichromatic circularly polarized laser pulse (t)E
�

equation (39). The
corresponding 2D (plane) TDSE is given by

(r, ) (r, ) (r, )
∂ Ψ = Ψ
∂

� � �
i t H t t

t
, (43)

2
0 r

1
(r, ) (r) r E( ) (r) r E( )

2
= + ⋅ = − ∇ + + ⋅�

�� � � � �
H t H t V t . (44)
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),()r( yxVV =
�

 is the two center Coulomb potential and the matter-field interaction is treated in the length

gauge. The TDSEs are solved numerically by a three-point difference algorithm combined with higher order split-

operator methods [42,76]. A temporal slowly varying envelope )10/(sin 2 τπt  where ωπτ /2= is one optical

cycle (o.c.) . The MHOHG power spectra P
x
(ω) and P

y
(ω) are obtained from the absolute square of the Fourier

transforms (FT) of the electron acceleration components a
x
(t) and a

y
(t)

2 2

( ) exp( ) ( ) ,   ( ) exp( ) ( )ω = − ω ω = − ω∫ ∫x x y yP i t a t dt P i t a t dt , (45)

with the laser induced electron acceleration obtained from the exact time-dependent electron wave function (r, )Ψ �
t :

2 2

2 2
( ) | | ,    ( ) | |

〈 〉 ∂ 〈 〉 ∂= = −〈Ψ Ψ〉 = = −〈Ψ Ψ〉
∂ ∂x y

d x H d y H
a t a t

dt x dt y . (46)

To describe the polarization properties of the emitted MHOHG, the relevant physical quantities are introduced
(see, for example, Fig. 1 in [75]). The power spectra in equation (45) have two x and y components, thus allowing
to extract the dependence of the phase difference δ between the polarized components of the emitted harmonics on
the angular frequency ω [78]. The ellipticity ε of MHOHG is defined as

ε = tan χ, (47)

where

sin(2 ) sin(2 )sin ,χ = ξ δ  tan /ξ = x yP P . (48)

In Fig. 6(a), at the intensity 14
0 102 ×=I  Wcm-2 ( 0755.00 =E  a.u.), laser wavelengths λ

1 
= 800 nm (ω =

0.057 a.u.), and λ
2
 = 400nm (2ω = 0.114 a.u.), and phases φ

1
 = π/3, and φ

2
 = 0 (φ = π/3) the maximum harmonic order

is obtained: ω/)5.13( ppm UIN +=  with 74)( −=−= Rty c  a.u. and 4.1)( −=ctx  a.u. at collision with the

neighbor ion. In Fig. 6(b) we show the MHOHG spectrum at the equilibrium distance R
e
=2 a.u.. We see the absence

of a long plateau with high efficiencies since now collision with neighboring nuclei does not occur, but rather the
H

2
+ molecule at R

e
=2 a.u. appears like a one-center atom to the ionized electron at larger x and y. We reemphasize

that at equilibrium as in atoms no collision (recollision) can occur thus resulting in negligible harmonic generation.
For longer wavelength in Fig. 6 at 800 nm, a long plateau is obtained with relatively high intensities.

Figure 6: MHOHG Spectra of y-aligned H
2

+ with a Bichromatic Circularly Polarized Laser Pulse at I
0
 = 2 × 1014

Wcm-2, λλλλλ1
 = 800nm, and λλλλλ2

 = 400nm, φφφφφ1
 = π  π  π  π  π  /3, φφφφφ2

 = 0 (a) at R = –y(t
c
) = 74 a.u. and (b) at R

e 
= 2 a.u.. The cut-off order

N
m
 = (I

p
 + 13.5 Up) / ω ≈ω ≈ω ≈ω ≈ω ≈ 120 for n = 0, ωωωωωt

c
 = 2πππππ / 3 and φ φ φ φ φ = φφφφφ1

 – φφφφφ2
 = π π π π π / 3
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For the polarization properties of the MHOHG emission, in Fig. 7 we show the phase difference δ between the
MHOHG x and y components and absolute values of the ellipticity ε as functions of harmonics order N calculated
using eqs. (43-46), corresponding to Fig. 6. We note that these polarization properties are very sensitive to the
harmonic order N, indicating different collision angles of the electron with ions for generation of harmonics. Near
the cutoff region where the MHOHG is induced by the electron collision with neighboring ions, the phase δ is π
[Fig. 7(a)], producing linearly polarized harmonics emissions with ellipticity | ε | ~ 0 as shown in panels (b), Fig. 7.
The emitted MHOHG polarizations can not match the polarization of the driving laser pulses.

Figure 7: (a): The MHOHG Phase Difference δδδδδ between the x and y Components and (b) Absolute Values of the Ellipticity εεεεε for
y-aligned H

2
+ MHOHG at R =74 a.u. with a Bichromatic Circularly Polarized Laser Pulse at I

0
 = 2 × 1014 Wcm-2, λλλλλ1

 = 800 nm,
and λλλλλ2

 = 400 nm, φφφφφ1
 = πππππ/3, φφφφφ2

 = 0, Corresponding to Fig. 6(a)

The present results show that elliptically polarized high order molecular harmonics are generated in a bichromatic
ultrashort intense circularly polarized laser pulse for a molecule whose molecular axis is aligned along the laser
polarization direction. As reported in [77], the polarization properties are also sensitive to the orientation of molecules
in linearly polarized laser fields. Therefore, taking advantage of this effect, the polarization of MHOHG may be
enhanced by aligning molecules with proper orientation angle. Moreover, a slightly elliptically polarized driving
laser pulses can also be employed for enhancement of the polarization of MHOHG [78]. In conclusion, MHOHG
with circularly polarized intense few cycle laser pulses allows for combination by collision of ionized electron with
neighboring ions at large internuclear distance R. The resulting harmonics are generally elliptically polarized with
large maximum energies beyond the atomic recollision cutoff or maximum energy I

p
 + 3.17 U

p
.

4. STRONG FIELD APPROXIMATION AND RECOLLISION

In the previous sections we have presented classical models of collision and recollision of an ionized electron with
parent or neighboring ions, resulting in emission of high energy electrons with a cut-off, i.e., a maximum energy
limit to I

p 
+ 3.17U

p 
for recollision with the parent ions and energies beyond depending on the internuclear distance

R between neighboring ions. A quantum theory of the HHG process has been formulated [62] permitting analytic
derivation of the HHG amplitudes under a strong field approximation, SFA, where the influence of the atomic
Coulomb potential on the free electron is neglected as compared to the laser field [1-4,79]. As a result the Coulomb
continuum eigenfunctions are substituted by field dressed plane waves, called Volkov states [1, 40]. Using the
ansatz for the total time dependent electron wave function

3( ) exp( )(| 0 v (v, ) | v )Ψ = 〉 + 〉∫
� � �

pt iI t d b t , (49)

where |0> denotes the ground state with ionization potential I
p
, and b( v

� , t) is the momentum space amplitude of
free electrons, one gets from the TDSE for an atom in the laser electric field )(tE

�
 [62]
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1

( ')
(v, ) ( ') [ ]exp[ ( ', ) ( ')] '

−∞
= − − + −∫

�
��� �t

p

qA t
b t i E t d p iS t t iI t t dt

c
, (50)

where 
2

1 '
( ', ) '' ( '') / 2

 = −  ∫
��t

t

q
S t t dt p A t

c
 is called, in [62], the semiclassical action of the electron in the field and

q = -|e|=-1 a.u. is the electron charge. The dipole transition moment is defined by ( ) | | 0= 〈 〉� �
d p p r which for atomic

bound s state is 2 3/( 2 )∝ + pd p p I . The canonical momentum is v ( )= +
�� � q

p A t
c

 and A(t) is the potential vector

defining 
1

( )
∂= −
∂

�
� A
E t

c t
. From equation (50) one obtains an expression for the laser induced dipole moment at time

t [62, 80]

3 *
10

( ) ( ')
( ) '  ( ) ( ') ( )exp[ ( , ') ( ')] . .= − ⋅ − − + − +∫ ∫

� �
� �� �� �t

p

qA t qA t
D t i dt d p d p E t d p iS t t iI t t c c

c c
(51)

Equation (51) corresponds to transitions via a resonant continuum state, neglecting contributions from non-
resonant states whose contribution vanishes at high laser frequencies (see equation (37) in [81], also [82, 83]).
Equation (51) has a simple physical interpretation as a sum of probability amplitudes for field induced various

processes [80]: i) 
( ')

( ')
 

⋅ − 
 

�
�� � qA t

E t d p
c  is the probability amplitude for a bound electron to make transitions to the

continuum at time t′ with canonical momentum p; (ii) the electron wavefunction is then propagated to time t acquiring

a “semiclassical” phase 1exp[ ( , ')]−iS t t , neglecting Coulomb effects as the free electron propagation occurs far

from the parent ion; (iii) the electron recombines at time t via the transition moment 
* ( ) 

− 
 

�
� � qA t
d p

c . The factor

I
p
(t–t′) reflects the excess energy the continuum electron has before recombining to the ground state of energy

ε
n
 = –I

p
 (Fig. 1).

We now recall a standard definition of the classical action S
c
 [84] of the electron during its sojourn time in the

continuum τ = t
f
 – t

0
 in the field 0

1
( ) cos

∂= ω = −
∂
A

E t E t
c t

,

2

( , , ) , ( , , ) ( )
2

= = + ⋅∫
�� �� � � � �� � �ft

c t

r q
S L r r t dt L r r t r A t

c
(52)

where ( , , )
� ��L r r t  is the classical Lagrangian. This definition looks different from the semiclassical action S

1
 used in

equation (50) and defined in [62]. Our goal now is establish the link between these two definitions of the action.

Using the definition of the canonical momentum ( )
∂= = +
∂

�� ��
��

L q
p r A t

cr
 and the definition of the classical Hamiltonian

21
( , , ) [ ( )]

2
= ⋅ − = −

�� � � � �� � q
H p r L r r t p A t

c
, we obtain the following expression for the standard classical action

0
0

0 1 0( , ) | ( , )= ⋅ − ⋅ −∫
� � � ��ff

tt
c f t ft

S t t p r p rdt S t t , (53)
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where

0 0

2
1 0

1 1
( , ) ( , , ) [ ( )]

2 2
= = −∫ ∫

�� � �f ft t

f t t

q
S t t H r p t dt p A t dt

c
, (54)

is the semiclassical action used in eq. (50) and defined in [62]. The classical equations of motion provide the further
relations

0 00 ( ) ( ) ( )
∂= − = ⇒ = = =
∂

�� � � ��
� f

H q
p p p t p t A t

r c
, (55)

This gives a new expression for S
c
, equation (54):

0 0 0 1 0( , ) ( ) [ ( ) ( )] ( , )= ⋅ − −� � �

c f f fS t t p t r t r t S t t . (56)

Since for the classical trajectories returning to the tunneling point, we have 0( ) ( ) 0− =� �

fr t r t , therefore we may

conclude that for such trajectories both actions differ only by a sign, i.e., 0 1 0( , ) ( , )= −c f fS t t S t t  and they yield the

same phase of the electron since in [62] the electron phase appears via exp[-iS
1
] whereas in the standard definition

via exp[iS
c
] [84].

The electron return condition is: )()( 0trtr f

�� =  which leads to 1 0sin( )= τ ωI t . Thus after performing the

integration in (52) we get (using A(t) = –(cE
0
/ω)sin(ωt) and equation (55)):

1

2
0 1 0 2( , ) ( , ) 2 [ / ]= − = − − τc f f pS t t S t t U I I , (57)

where 
2

0
0 2

( )
,

4
τ = − =

ωf p

qE
t t U  is the ponderomotive energy and

0

0
1

cos( ) cos( )
sin( ) ,

ω − ω
= ω =

ω∫ ft f

t

t t
I dt t (58a)

0

02
2

sin(2 ) sin(2 )1
sin ( ) .

2 4

ω − ω
= ω = τ +

ω∫ ft f

t

t t
I dt t (58b)

Imposing again the return condition: 1 0sin( )= τ ωI t , one gets from (53) the final expression for S
c
 in equation

(57) or S
1

2
0 1

1 0 0 2

sin(2 ) sin(2 )
( , ) [ cos(2 ) ] 2  

2

ω − ω  
= τ ω + = − ω τ 

f
f p p

t t I
S t t U t U I . (59)

Equation (59) agrees with equation (4) in [85].

The electron wavefunction during its classical motion staring at t = t
0
 and ending at t = t

f
 acquires the phase

according to the formula )),(exp(),(exp( 010 ttiSttiS ffc −= . Like in the Michelson interferometer [6], the tunneling

process acts as a beam splitter by splitting the electron wavefunction into two parts, a bound part which acquires the

phase )( 0ttIIE fppg −==− ττ  and its continuum part acquires the phase ),(),( 010 ttSttS ffc −= . These two

parts recombine when the electron returns to the core. Thus the resulting harmonic phase upon recombination is
equal to the difference of these two phases:
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1Φ = − τ + ω = − − τ + ωH c p f p fS I N t S I N t (60)

for harmonic order N of energy (in a.u.)

2 2
0 0( ) / 2 2 [sin( ) sin( )]ω = + = + = ω − ω +��

f p f p p pN E I r t I U t t I . (61)

We note that a similar equation to equation (61) was used earlier to predict classically maximum 3U
p
 energies

in microwave ATI energies [43]. Equation (61) predicts the classical result, as reported in table 3, that maximum
return energy occurs for the electron trajectory initialized at the laser phase ωt

0
 = 0.09982π. Next, such an electron

accelerates in the laser electric field E(t) and (assuming that its initial velocity is v(t
0
) = 0) returns to the core at the

phase 1.4003 0.7ω = π =ft cycle with the kinetic energy E
f
 = 3.1731U

p
.

The semiclassical 3-step recollision model proposed in [4], next derived using SFA approximation by Lewenstein
et al. [62] and later rederived via Feynman’s path-integral approach [84, 86], allows one to visualize the interaction
between a strong laser field and atom or molecule. A key result of this detailed study of the 3-step model shows that
dominant quantum paths follow the classical trajectories in the continuum as described in section 3. Furthermore, it
was shown the existence of two apparent quantum paths (electron trajectories), Fig. 3, leading to the same final
kinetic energy: a short and long path with slightly different recollision times, the short trajectories corresponding to
later laser ionization time t

0
 and earlier recombination time t

f
 than the long trajectory [87]. The accumulated harmonic

phase Φ
H 

as predicted by equation (60) can be controlled by the phase and strength of second or third harmonic
fields, i.e. E

n
(t) = E

0
 cos (nωt), n = 2, 3, as shown in [88-94] and also via phase matching conditions [95]. Numerical

solutions of the TDSE for atoms [96] and more recently for molecules [81,97] allow for exact calculations of
harmonic amplitudes and phases in HHG in atoms and MHOHG in molecules. The information gained from such
TDSE simulations allows a time profile analysis of harmonics generation and a comparison with the 3-step model.
Time-frequency analysis of complex signals [98] emitted as in the case of harmonics [99] proceeds via the use of
wavelet transforms of the dipole acceleration, thus allowing for imaging electron trajectory recollision time with
parent ions and to monitor the nuclear response in molecules to recollisions [100].

The method is based on calculating time profiles of harmonics via wavelet transforms [98,99] of the time

dependent electron acceleration )(ta  which includes phase effects,

2 2

1/ 2 2

( ' )
( , ) exp( ')exp[ ] ( ') '

2

∞

−∞

ω ω −ω = − ω −
π σ σ∫W

t t
a t i t a t dt , (62)

σ is the width of the Gaussian time window in the transform (62) corresponding to a Gaussian frequency filter with
a spectral width of ω/σ around a central frequency ω

0 
= ω. The time profile analysis of a harmonic spectrum

provides the recollision time t
f
 of an electron during the ionization process in strong fields as predicted in section 2

by classical modeling, equation (32). We illustrate in Fig. 8 such time profile of MHOHG obtained from solutions
of the TDSE for the non-Born-Oppenheimer (i.e., with moving nuclei) 1-D H

2
 molecules [29,100] in an electric

field. Fig. 8(b) illustrates the time profile of the electron acceleration a
el
(t) and Fig. 8(c) for the proton acceleration

a
R
(t) for particular harmonic orders N = 57 and 69, the latter near the cutoff. Two recollision times t

f
 are immediately

recognized for N=57, with the short trajectory appearing near zeroes of the field at n+1/4 cycle whereas the long
trajectory appears near field extrema at n and n+1/2 cycles. At the higher harmonic order N=69 near the cut-off,
both short and long trajectories, merge as predicted by the classical recollision model, Fig. 3.

5. CONCLUSION

Modern ultrashort laser pulses produce electric fields whose strength approaches and also exceeds that inside
atoms and molecules (table 1). This new regime of nonlinear nonperturbative radiative interactions with atoms and
molecules, with its concomitant strong field ionization leads to new highly nonlinear phenomena such as high order
harmonic generation, HHG, the basis of Attosecond Science [2,8]. HHG is modeled as an adiabatic, single active
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electron, 3-step process involving: (i) under and/or above barrier ionization, the first via tunneling ionization [1-6];
(ii) electron propagation in the field thus acquiring ponderomotive energy of order U

p
 = I / 4ω2 (in a.u.) at recollsion

time; (iii) recollision with the parent ion or collision and recombination with neighboring ions with energy of high
energy coherent photons in HHG. We have summarized in section 1 simple expressions based on electrostatics and
field modified Coulomb potential for the maximum electric field E

m
 separating the under and above barrier ionization

processes [101]. In sections 2 and 3 we have derived using a simple classical model the ponderomotive energies
acquired upon recollision with parent ions or collision with neighboring ions, thus defining the cutoff laws for HHG
in atoms and MHOHG in molecules for linear and circular polarizations.

The main conclusion is that in the presence of intense fields, ionized electrons are completed controlled by the
field, thus spawning multiple scenarios for controlling HHG by selecting electron collision and recollision paths,
especially in atoms for attosecond pulse synthesis [102]. Recollision in molecules introduces more complexities, as
shown for example in C

60
, where the large polarizability of the molecule influences the recollision dynamics [103].

Similarly, recent theoretical work on nonsymmetric molecules shows the controlling influence of permanent dipole
moments in MHOHG [104-106], including polarizability [107, 108] as previously shown for chemical reactions
[109].

One of the main spin-offs of laser induced collision-recollision, LIERC, is Quantum Dynamic Imaging [110],
earlier introduced as Laser Induced Electron Diffraction, LIED [24], tomographic imaging of molecular orbitals,
TIMO [26] via molecular recollision interferometery in MHOHG [111]. Imaging molecular structure by electron
diffraction using intense few-cycle laser pulses is becoming a new versatile tool for imaging molecules due to the
short wavelengths (sub-nanometer) and ultrashort collision-recollision time (τ < one cycle) of the high energy
photon electrons [6, 26, 112-116] produced under the conditions of ultrashort intense laser exposure. In spite of the
highly nonlinear, nonperturbative response of atoms and molecules to such extreme conditions, simple classical
models of laser induced collision and recollision have been the guiding models for understanding and in many cases

Figure 8: Left Column: (a) the Electric Field E(t), (b) Time Profile of the Electron Acceleration a
el
, and (c) Time Profile of the

Proton Acceleration a
R
 for the Harmonic order N = 57. The Right Column Shows the Same as the Left Column but for a

Higher Harmonic N = 69 (Near the Cutoff) with Different width σσσσσ for the Transforms, Equation (62)
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for controlling the physical processes that occur in this new nonperturbative regime of light-matter interaction.
Extension of the simple recollision models to laser induced nuclear reactions at super-intensities (I ≥ 1020 W/cm2)
[117] have shown that such recollision models are again useful concepts [118,119] for also imaging nuclear processes
[120] but will require modification due to relativistic effects and verification via appropriate Time-Dependent
Dirac Equation [121].
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