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ABSTRACT: The time-dependent Schrodinger equation is solved in a two dimensional flatland space for the single
charge transfer to the ground state for both p + H and � + H collisions at an incident energy of 10 keV/amu. The total
ground state single capture probability is found to be almost 1500 times larger for the p + H collision. The time-
dependent Schrodinger equation is also solved in a four dimensional flatland space for the double charge transfer to the
ground state for both � + He and Li3+ + He collisions at an incident energy of 50 keV/amu. The total ground state double
capture probability is found to be almost 15 times larger for the � + He collision.

1. INTRODUCTION

Charge transfer in p + H collisions by direct solution of the time-dependent Schrodinger equation was first studied
in a two dimensional Cartesian flatland [1]. With the development of parallel supercomputers, charge transfer in
bare ion collisions with one active electron atoms and ions by direct solution of the time-dependent Schrodinger
equation was subsequently studied in a full three dimensional Cartesian space. Calculations have been made for
p + H [2–4], � + H [5], Be4+ + H [6], p + He+ [7], � + Li2+ [7], and p + Li [8, 9] collisions.

Double charge transfer in bare ion collisions with two active electron atoms and ions by direct solution of the
time-dependent Schrodinger equation has yet to be studied in either a four dimensional Cartesian flatland space or
the full six dimensional Cartesian space. Only a study of the single ionization in p– + He collisions has used a four
dimensional Cartesian flatland space to solve the time-dependent Schrodinger equation to better understand ejected
electron correlation effects [10].

In this paper the time-dependent Schrodinger equation is solved in a two dimensional flatland space for the
single charge transfer to the ground state for both p + H and � + H collisions. The time-dependent Schrodinger
equation is also solved in a four dimensional flatland space for the double charge transfer to the ground state for
both � + He and Li3+ + He collisions. Details of the numerical methods are presented in Section II, single and double
charge transfer results are presented in Section III, and a brief summary of future plans is given in Section IV.
Unless otherwise stated, all quantities are given in atomic units.

2. THEORY

2.1. Two Dimensional Flatland

The time-dependent Schrodinger equation for a bare ion projectile colliding with a H atom is given by:
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where Z
t
 = 1, Z

p
 is the projectile charge, and ( )

�
R t  is the time-dependent projectile ion position vector. As a first

approximation we consider a two dimensional (2D) Cartesian flatland space in which the time-dependent equation
is given by:
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The projectile follows a straight-line trajectory given by:
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sR t = bi + y +vt j, (5)

where b is the impact parameter, y
s
< 0 is the starting position, and v is the projectile velocity. The coefficients c

t
 and

c
p
 in Eqs. (3)-(4) are used to soften the singularity of the potentials and allow the energy of the 2D flatland atoms to

resemble full 3D atoms.

The ground state of any H-like atom may be obtained by relaxation of the time-dependent Schrodinger equation
in imaginary time (�). In 2D Cartesian flatland space the time-dependent equation is given by:
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and (x0, y0) is the position of a H-like atom with nuclear charge Z. For calculations of single charge transfer the

projectile frame of reference is used. The target H atom ground state wavefunction, � �H
targetP x, y , is found by relaxation

of Eqs.(6)-(7) with Z = Z
t
 = 1, c  = c

t
, x0 = b, and y0 = y

s
 for each projectile trajectory. To obtain single charge transfer

cross sections the projectile H-like atom ground state wavefunction, � ��H like
projectileP x, y , is found by relaxation of Eqs.(6)-

(7) with Z = Z
p
, c = c

p
, x0 = 0, and y0 = 0.

With the initial condition:

� � � �0 H
targetP x, y,t = = P x, y , (8)

the time-dependent Schrodinger equation is propagated forward in real time (t) using Eqs. (2)-(4). The ground state
single capture scattering probability for a given projectile velocity and impact parameter is given by:
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* .� ��� � H like
projectileS v,b = dx dyP x,y P x,y,t (9)

The single capture cross section for a given projectile velocity is given by:
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� � � �2�σ v = S v,b db, (10)

and has the dimensions of length.

2.2. Four Dimensional Flatland

The time-dependent Schrodinger equation for a bare ion projectile colliding with a He atom is given by:
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where Z
t
 = 2, Z

p
 is the projectile charge, and ( )

�
R t is the time-dependent projectile ion position vector. As a first

approximation we consider a four dimensional (4D) Cartesian flatland space in which the time-dependent equation
is given by:
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The projectile follows a straight-line trajectory given by:
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sR t = bi + y +vt j, (16)

where b is the impact parameter, y
s
< 0 is the starting position, and v is the projectile velocity. The coefficients

c
t
, c

u
, and c

t
 in Eqs.(13)-(15) are used to soften the singularity of the potentials and allow the energy of the 4D

flatland atoms to resemble full 6D atoms.

The ground state of any He-like atom may be obtained by relaxation of the time-dependent Schrodinger equation
in imaginary time (�). In 4D Cartesian flatland space the time-dependent equation is given by:
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and (x0, y0) is the position of a He-like atom with nuclear charge Z. For calculations of double charge transfer the

projectile frame of reference is used. The target He atom ground state wavefunction, � �1, 1, 2, 2
He

targetP x y x y  is found by

relaxation of Eqs. (17)-(18) with Z = Zt= 2, c  = c
t
, x

0
 = b, and y

0
 = y

s
 for each projectile trajectory. To obtain double

charge transfer cross sections the projectile He-like atom ground state wavefunction, � �1, 1, 2, 2
�He like

projectileP x y x y , is found

by relaxation of Eqs. (17)-(18) with Z = Z
p
, c  = c

p
, x

0
 = 0, and y

0
 = 0.

With the initial condition:

� � � �1, 1, 2, 2, 1, 1, 2, 20 He
targetP x y x y t = = P x y x y , (19)

the time-dependent Schrodinger equation is propagated forward in real time (t) using Eqs. (12)-(14). The ground
state double capture scattering probability for a given projectile velocity and impact parameter is given by:
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The double capture cross section for a given projectile velocity is given by:

� � � �2�σ v = S v,b db, (21)

and has the dimensions of length.

3. RESULTS

3.1. Two Dimensional Flatland

For p + H and � + H collisions, we employed a (384)2 point numerical lattice. The x and y coordinates were
spanned from –38.4 to +38.4 in each direction using a uniform mesh spacing of �x = �y = 0.20. Only the y
coordinate was partitioned over N

y
 parallel core processors. A low order finite difference method was used to

represent the two kinetic energy operators, with message passing along the y coordinate. We also used a further
parallelization over N

b
 impact parameters, with no message passing. Thus, the total number of parallel core

processors needed for a given projectile velocity is N
y
 N

b
. A run with N

y
 = 12 and N

b
 = 5 requires the use of 60

core processors.

For p + H collisions we choose Z
t
 = Z

p
 = 1 and c

t
 = c

p
 = 0.80 to give a ground state energy of H equal to

–0.50, following relaxation on the lattice using Eqs. (6)-(7). For � + H collisions we choose Z
t
 = 1, Z

p
 = 2, c

t
 = 0.80,

and c
p
 = 0.40 to give a ground state energy of He+ equal to -2.00, following relaxation on the lattice using

Eqs. (6)-(7).

The 2D one electron wavefunction was propagated in time using Eqs. (2)-(4) with a starting value of y
s
 = –25.6

in Eq.(5) and 24 impact parameters ranging from b = 0.20 to b = 8.0. For an incident energy of 10 keV/amu the
projectile speed is v = 0.64. An exponential masking function was used to absorb any spurious wave reflection at the
lattice boundaries. Ground state single capture scattering probabilities, S(v, b) from Eq. (9), as a function of impact
parameter are shown in Figure 1 for p + H collisions and in Figure 2 for � + H collisions. The single capture into the
H atom ground state for p + H collisions is much more probable than single capture into the He+ atomic ion ground
state for � + H collisions. The total single capture cross sections obtained using Eq. (10) are 1.8 x 10-8 cm for p + H
collisions, 1.2 x 10-11 cm for ��+ H collisions, and a ground state ratio of 1500.
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It is interesting to note, that previous full three dimensional Cartesian space single capture cross sections at 10.0
keV/amu found 7.9 x 10–16 cm2 for p + H collisions [3], 1.3 x 10–18 cm2 for � collisions [5], and a ground state ratio
of 600.

3.2. Four Dimensional Flatland

For � + He and Li3+ + He collisions, we employed a (384)4 point numerical lattice. The x1, y1, x2, and y2 coordinates
were spanned from –38.4 to +38.4 in each direction using a uniform mesh spacing of �x1 = �y1 = �x2 = �y2 = 0.20.
Each coordinate was partitioned over N

c
 parallel core processors. A low order finite difference method was used to

represent the four kinetic energy operators, with message passing along the x1, y1, x2, and y2 coordinates. We also
used a further parallelization over N

b
 impact parameters, with no message passing. Thus, the total number of parallel

core processors needed for a given projectile velocity is N4
c
 N

b
. A run with N

x1
 = N

y1
 = N

x2
 = N

y2
= 12 and N

b
 = 5

requires the use of 103,680 core processors.

For � + He collisions we choose Z
t
 = Z

p
 = 2, c

t
 = c

p
 = 0.41, and c

u
 = 0.1 to give a ground state energy of He

equal to -2.90, following relaxation on the lattice using Eqs. (17)-(18). For Li3+ + He collisions we choose Z
t
 = 2, Z

p

= 3, c
t
 = 0.41, c

p
 = 0.28, and c

u
 = 0.1 to give a ground state energy of Li+ equal to -7.28, following relaxation on the

lattice using Eqs. (17)-(18). The ground state energies for He and Li+ match experimental values [11].

The 4D two electron wavefunction was propagated in time using Eqs. (12)-(15) with a starting value of
y

s
 = –19.2 in Eq. (16) and 12 impact parameters ranging from b = 0.20 to b = 3.0. For an incident energy of 50 keV/

amu the projectile speed is v = 1.42. An exponential masking function was used to absorb any spurious wave
reflection at the lattice boundaries. Ground state double capture scattering probabilities, S(v, b) from Eq. (20), as a
function of impact parameter are shown in Figure 3 for � + He collisions and in Figure 4 for Li3+ + He collisions.
The double capture into the He atom ground state for � + He collisions is more probable than double capture into
the Li+ atomic ion ground state for Li3+ + He collisions. The total double capture cross sections obtained using Eq.
(21) are 7.4 x 10–10 cm for � + He collisions, 4.9 x 10-11 cm for Li3+ + He collisions, and a ground state ratio of 15.

Figure 1: Ground state single capture probabilities in p + H collisions at an incident energy of 10.0 keV/amu
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Figure 2: Ground state single capture probabilities in  + H collisions at an incident energy of 10.0 keV/amu

Figure 3: Ground state double capture probabilities in  + He collisions at an incident energy of 50.0 keV/amu
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Figure 4: Ground state double capture probabilities in Li3+ + He collisions at an incident energy of 50.0 keV/amu

4. SUMMARY

In the future, we plan to continue the 2D flatland calculations for p + H and � + H collisions to determine single
charge transfer into both ground and excited states at a variety of incident energies. It will be interesting to see how
the 2D/3D cross section ratios compare for p and � projectiles. We also plan to continue the 4D flatland calculations
for � + He and Li3+ + He collisions to determine double charge transfer into both ground and excited states at a
variety of incident energies. Hopefully, the 4D cross section ratios can be used as guide for accessing the convergence
of future truly large scale 6D cross section calculations.
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