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ABSTRACT: A time-dependent close-coupling method in spherical polar coordinates is developed to calculate the
electron-impact double ionization of the H

2
 molecule. The full wavefunction is represented by an expansion in products

of six-dimensional radial-angular numerical functions and analytic rotational functions. A test calculation finds good
agreement between the new method and a previous frozen core method for the single ionization of H

2
 for the M = l

0
 = 0

partial wave and an impact energy of 100.0 eV. A test calculation is also made for the double ionization of H
2
 for the

same partial wave and impact energy.

I. INTRODUCTION

A time-dependent close-coupling (TDCC) method was originally developed to calculate the electron-impact single
ionization of H+

2 [1]. The full wavefunction was represented by an expansion in products of four-dimensional radial-
angular numerical functions and analytic rotational functions. When the close-coupling results for low angular
momentum are combined with distorted-wave results for high angular momentum, the total cross section was found
to be in excellent agreement with experiment [2]. A frozen-core TDCC method was then used to calculate the
electron-impact single ionization of H2 [3]. The total cross section was again found to be in excellent agreement
with experiment [4]. The frozen core TDCC method has also been used to calculate the electron-impact single
ionization of Li2 [5].

In this article we develop a time-dependent close-coupling method to calculate the electron-impact double
ionization of H2. We note that a TDCC method for atoms has been previously applied to calculate the electron-
impact double ionization of He [6], [7], Mg [8], Be [9], and B+ [10]. For H2 the full wavefunction is represented by an
expansion in products of six-dimensional radial-angular numerical functions and analytic rotational functions. Test
calculations are made on a relatively small numerical lattice for one partial wave and one incident energy. Details of
the TDCC method of H2 are presented in Section II, test calculations are presented in Section III, and a brief summary
of future plans is given in Section IV. Unless otherwise stated, all quantities are given in atomic units.

II. THEORY

A. Relaxation to the Ground State

The six-dimensional wavefunction 0�  for the ground state of H2 is obtained by relaxation of the time-dependent
Schrodinger equation in imaginary time (�):
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where ( )V r
�

 is a single particle interaction with the target nuclei. The wavefunction 0� is represented by an expansion

in simple products of four-dimensional radial-angular functions 
1 2 1 1 2 2( , , , , )m mP r r� � � and rotational functions:
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 and m1 + m2 = 0. The angular reduction of the time-dependent Schrodinger equation in imaginary

time yields a set of close-coupling equations given by:
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The single particle operator in the close-coupling equations is given by:
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where K(r) and K(r, �) are kinetic energy operators [1]. The axial angular momentum operator is given by:
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The nuclear interaction operator for H2 is given by:
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where R is the internuclear separation, which is aligned along the z axis. The two particle operator in the close-
coupling equations is given by:
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where | | (cos )qP� �  is an associated Legendre function.

At time � = 0 the radial-angular functions are given by:

1 2 1 21 1 2 2 1 0 1 1 1 0 2 2 ,0 ,0( , , , , ) ( , ) ( , ) ,m m s s m mP r r P r P r� � � � � � � � (8)

where the radial-angular orbital, P1s0 (r, �), is obtained by matrix diagonalization of the Hamiltonian, T
m 

= 0 (r,��).
Upon relaxation in imaginary time of Eq.(3), an accurate wavefunction for the ground state of H2 is obtained.
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B. Propagation of the Scattering State

The nine-dimensional wave function �M for electron ionization of the ground state of H2 is obtained by solving the
time-dependent Schrodinger equation:
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The wavefunction �M for a given M symmetry is represented by an expansion in simple products of six-

dimensional radial-angular functions
1 2 3 1 1 2 2 3 3( , , , , , , )M
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where M = m1 + m2 + m3. The angular reduction of the time-dependent Schrodinger equation yields a set of time-
dependent close-coupling equations given by:
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At time t = 0 the radial-angular functions are given by:
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The Gaussian wavepacket is given by:
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where a is the localization radius, w is the packet width, l0 is the incident angular momentum, and the incident

energy equals 2
0 / 2.k

Following propagation in real time of Eq. (11), momentum space amplitudes are calculated using:
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where the radial-angular orbitals, P
klm

 (r, �), are obtained by matrix diagonalization of the Hamiltonian, T
m
 (r, �). In

addition, the radial-angular orbita ls, ( , ),klmP r ��  are obtained by matrix diagonalization of the

Hamiltonian, ( , ) ( , ),m HST r V r� � �  where V
HS

 (r, �) is the Hartree-Slater potential [3].

C. Cross Sections

The total single ionization cross section leaving H+
2 in the ground state is given by:
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The total double ionization cross section is given by:
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The energy differential double ionization cross section is given by:
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where � is an angle in the (k1, k2) hyperspherical plane and � is an angle in the plane perpendicular to the (k1, k2)
hyperspherical plane, both defined from 0 to �/2. The energy and angle differential double ionization cross section
is given by:
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where the incoming electron beam is oriented at angles (�
e
, �

e
) with respect to the z axis, Y

lm
 (�, �) is a spherical

harmonic, and �
l
 is the Coulomb phase shift.

III. RESULTS

As a simple numerical test of the theory, we use a radial-angular grid of �r
i
 = 0.40 with  N

r
 = 72 and ��

i
 = 0.125�

with N��= 8. The internuclear separation is R = 1.4.

Bound and continuum radial-angular orbitals for 2H � are found upon matrix diagonalization of T
m
(r,��). For

m = 0 we obtained 29 bound states, beginning with P1s0 (r, �) at -35.8 eV, and 230 continuum states ranging from
0.06 eV to 148.9 eV.  For m = 1 we obtained 23 bound states, beginning with P2p1 (r, �) at -12.5 eV, and 229
continuum states ranging from 0.09 eV to 147.3 eV.

Bound and continuum radial-angular orbitals for H2 are found upon matrix diagonalization of T
m
 (r, �) + V

HS

(r, �). For m = 0 we obtained 16 bound states, beginning with 1 0 ( , )sP r �� at -15.4 eV, and 241 continuum states

ranging from 0.03 eV to 149.9 eV. For m = 1 we obtained 10 bound states, beginning with 2 1( , )pP r �� at -3.8 eV, and

240 continuum states ranging from 0.05 eV to 147.5 eV. The choice of the parameter � in the local exchange
potential allows adjustment of the 1s0 binding energy to be near the experimental value.

For relaxation to the ground state, we use a numerical lattice of (72×8)2 points partitioned over 324 parallel
computer cores and the 3 coupled channels found in Table I. At time � = 0 the radial-angular functions of Eq.(8)
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yield an energy of -49.3 eV. Following 1000 time steps at ���= 0.01 the radial-angular functions of Eq.(3) yield an
energy of -52.5 eV.

For propagation of the scattering state, we use a numerical lattice of (72×8)3 points partitioned over 5832
parallel computer cores and the 7 coupled channels found in Table II. At time t = 0 we choose a Gaussian wavepacket
of Eq. (13) with a localization radius a = 14.4, a packet width ��= 3.6, an incident angular momentum l0 = 0, and an
incident energy of E0 = 100.0 eV. Following 1500 time steps at �t = 0.01 the radial angular functions of Eq. (11) are
used to calculate the 3 × (481)2 momentum space amplitudes of Eqs.(14)-(16) and the (459)3 momentum space
amplitudes of Eq. (17).

The total single ionization cross section leaving 2H � in the ground state from Eq. (18) is found to be 2.25

Mbarns for M = l0 = 0 at 100.0 eV incident energy. The total double ionization cross section from Eq.(19) is found
to be 29.5 Kbarns for M = l0 = 0 at 100.0 eV incident energy.

To check our total single ionization cross section, we carried out frozen-core TDCC calculations [3], as outlined

in the Appendix. The initial state is the bound radial-angular orbital 1 0 ( , )sP r �� at -15.4 eV. For propagation of the

scattering state, we use a numerical lattice of (72×8)2 points partitioned over 324 parallel computer cores and the 3
coupled channels found in Table I. Following 1500 time steps at �t = 0.01 the radial-angular functions of Eq. (24)
are used to calculate the (481)2 momentum space amplitudes of Eq.(26). The total single ionization cross section
from Eq. (27) is found to be 2.01 Mbarns for M = l0 = 0 at 100.0 eV incident energy, including both the S = 0 singlet
and S = 1 triplet contributions.

IV. SUMMARY

In the future we plan to apply the TDCC method to a full calculation of the electron-impact double ionization of H2.
We will choose an impact energy above the full breakup energy of 52.5 eV and the number of Ml0 partial waves will
include M � 2 and l0 � 6. We plan on using a radial-angular grid of �r

i
 = 0.20 with N

r
 = 144 and ��

i
 = 0.0833� with

N��= 12. The numerical lattice of (144 × 8)3 points will be partitioned over 46,656 parallel computer cores. The
number of coupled channels for relaxation and propagation will also be increased to at least include m

i
 = ± 2.
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APPENDIX
The six-dimensional wavefunction �M for electron ionization of one active electron in the ground state of H

2
 is obtained by solving the

time-dependent Schrodinger equation:
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The wavefunction �M for a given M symmetry is represented by an expansion in simple products of four-dimensional radial-angular

functions 
1 2 1 1 2 2( , , , , )M

m mP r r t� � and rotational functions:
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where M = m
1
 + m

2
. The angular reduction of the time-dependent Schrodinger equation yields a set of time-dependent close-coupling

equations given by:
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At time t = 0 the radial-angular functions are given by:
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Momentum space amplitudes are calculated using:
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The total single ionization cross section is given by:
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where the subshell occupation number w
t
 = 2 for the ground state of H

2
.

Table I
4D Coupled Channels

m
1

m
2

1 0 0

2 1 -1

3 -1 1

Table II
6D Coupled Channels

m
1

m
2

m
3

1 0 0 0
2 1 -1 0
3 -1 1 0
4 1 0 -1
5 -1 0 1
6 0 1 -1
7 0 -1 1
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